Overview: Market Power

- Competitive Equilibrium
- Profit Maximization
- Monopoly
- Output and Price Analytics
- Coordination of Multiple Plants
- Pricing with Learning Effects and Network Externalities

Competitive Equilibrium

- Mechanism of Competitive Equilibrium
- Demand Growth
- Higher prices stimulate more supply from existing firms
- Emergence of profits causes entry/expansion of capacity
- Demand shortfall
- Lower prices cause cutbacks in in supply from existing firms
- Losses (negative profits) cause exit/contraction of capacity
- Processes continue until economic profits return to 0

Market Power

- Ability to raise price above costs and make sustainable profits
- Economic costs and economic profits
- Requires that the mechanism of competition fails to operate
- Barriers to entry
- Sufficient product differentiation (that cannot be copied)
- Secret technology - No information on profitability
- Market too small relative to efficient production scale

Profit Maximization

Production: Cost $\mathrm{C}(\mathrm{Q})$	$\mathrm{Q} \quad$Distribution and Sale: Revenue $\mathrm{R}(\mathrm{Q})$

How do you maximize profit

$$
\Pi=\mathrm{R}-\mathrm{C} \text { ? }
$$

(drum roll)

Pick Q such that $\quad \mathrm{MR}=\mathrm{MC}$

Monopoly: Price and Output Analytics

- Focus on monopoly, the simplest case of market power
- Suppose we have

Demand: $\quad \mathrm{Q}=100-\mathrm{P}$
Costs: $\quad \mathrm{MC}=\mathrm{AC}=10$

Direct Monopoly Solution

Demand: $\mathrm{Q}=100-\mathrm{P} \quad$ implies that
Revenue: $\quad \mathrm{R}=\mathrm{PQ}=(100-\mathrm{Q}) \mathrm{Q}$
$\mathrm{MC}=\mathrm{AC}=10$ implies that costs are $\mathrm{C}=10 \mathrm{Q}$

Profit: $\quad \Pi=\mathrm{R}-\mathrm{C}$

$$
\begin{aligned}
& =(100-Q) Q-10 Q \\
& =\left(100 Q-Q^{2}\right)-10 Q
\end{aligned}
$$

Want to find Q (or P) that maximizes Π.

Direct Monopoly Solution

Profit: $\Pi=\left(100 \mathrm{Q}-\mathrm{Q}^{2}\right)-10 \mathrm{Q}$
Take derivative:

$$
\begin{aligned}
\mathrm{d} \Pi / \mathrm{dQ}= & (100-2 \mathrm{Q})-10 \\
& (=\mathrm{MR}-\mathrm{MC})
\end{aligned}
$$

Profits are maximized where $\mathrm{d} \Pi / \mathrm{dQ}=0$

$$
\begin{aligned}
& 0=(100-2 \mathrm{Q})-10(=\mathrm{MR}-\mathrm{MC}) \\
& \mathrm{Q}=45
\end{aligned}
$$

With price

$$
\mathrm{P}=100-\mathrm{Q}=55
$$

MR in Detail

Approximate MR as $\Delta \mathrm{R}$ from selling one more unit
i.e., compare selling Q_{0} at P_{0} with selling $Q_{1}=\left(Q_{0}+1\right)$ at P_{1} [with $\mathrm{P}_{1} \leq \mathrm{P}_{0}$]

$$
\begin{aligned}
\mathrm{MR} & =\mathrm{R}_{1}-\mathrm{R}_{0}=\mathrm{P}_{1} \mathrm{Q}_{1}-\mathrm{P}_{0} \mathrm{Q}_{0} \\
& =\mathrm{P}_{1}\left(\mathrm{Q}_{1}-\mathrm{Q}_{0}\right)+\mathrm{Q}_{0}\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right) \\
& =\mathrm{P}_{1}+\mathrm{Q}_{0} \Delta \mathrm{P}
\end{aligned}
$$

MR in Pictures

MR, Calculus Version

$$
\begin{aligned}
& R=P(Q) Q \\
& M R=\frac{d R}{d Q}=P+Q \frac{d P}{d Q} \\
& \text { (Compare to } \mathrm{MR}=\mathrm{P}_{1}+\mathrm{Q}_{0} \Delta \mathrm{P} \text {) }
\end{aligned}
$$

The Monopoly Picture

The Mark-Up Formula

$$
M R=P+Q \frac{d P}{d Q}=P\left(1+\frac{Q}{P} \frac{d P}{d Q}\right)=P\left(1+\frac{1}{\varepsilon}\right)
$$

At a maximum of profits, we have $\mathrm{MR}=\mathrm{MC}$, so

$$
M C=P\left(1+\frac{1}{\varepsilon}\right)
$$

Or, rearranging terms,

$$
\frac{P-M C}{P}=-\frac{1}{\varepsilon} \quad \begin{gathered}
\varepsilon \text { is the price elasticity } \\
\text { of demand }
\end{gathered}
$$

Example: Supermarkets and Convenience Stores

- Supermarkets: $\varepsilon \approx-10$

$$
(\mathrm{P}-\mathrm{MC}) / \mathrm{P}=.1, \quad 10 \% \text { markup }
$$

- Small convenience stores: $\varepsilon \approx-5$

$$
(\mathrm{P}-\mathrm{MC}) / \mathrm{P}=.2, \quad 20 \% \text { markup }
$$

- Which do you expect to show higher profits?

Example: Drug pricing

- Elasticity estimates often are near -1.0
- If elasticity is -1.1 , then

$$
(\mathrm{P}-\mathrm{MC}) / \mathrm{P}=.9 ; \quad 90 \% \text { markup }
$$

- e.g. Tagamet monopoly, elasticity is -1.7
$(\mathrm{P}-\mathrm{MC}) / \mathrm{P}=.58 ; \quad 58 \%$ markup

Multi-plant Firms

- Max profit $\Pi=R\left(\mathrm{Q}_{\mathrm{H}}+\mathrm{Q}_{\mathrm{L}}\right)-\mathrm{C}_{\mathrm{H}}\left(\mathrm{Q}_{\mathrm{H}}\right)-\mathrm{C}_{\mathrm{L}}\left(\mathrm{Q}_{\mathrm{L}}\right)$, by
- $\mathrm{MC}_{\mathrm{H}}\left(\mathrm{Q}_{\mathrm{H}}\right)=\mathrm{MC}_{\mathrm{L}}\left(\mathrm{Q}_{\mathrm{L}}\right)=\mathrm{MR}\left(\mathrm{Q}_{\mathrm{H}}+\mathrm{Q}_{\mathrm{L}}\right)$

Multi-Plant Firm: Graphical Setup

Overall MC Curve is the Horizontal Sum of Individual Plant MC Curves

Pricing and Allocation of Production in a Multi-Plant Firm

Algebra of Constructing MC Curve

Plant "H": $\mathrm{MC}_{\mathrm{H}}=5+\mathrm{Q} / 10$
Plant "L": $\mathrm{MC}_{\mathrm{L}}=4+\mathrm{Q} / 20$

- Up to $\mathrm{Q}=20$, all production is at " L " and the cost curve is equal to the single plant supply curve (since $\mathrm{MC}_{\mathrm{L}}(20)=\mathrm{MC}_{\mathrm{H}}(0)=5$)
- Above $\mathrm{Q}=20$, some production occurs at " H "

Algebra of Overall MC

- To sum horizontally, must solve for Q to add

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{H}}=-50+10 \mathrm{MC} \\
& \mathrm{Q}_{\mathrm{L}}=-80+20 \mathrm{MC}
\end{aligned}
$$

- So for $\mathrm{Q}_{\mathrm{T}}<20$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{T}}=\mathrm{Q}_{\mathrm{L}}=-80+20 \mathrm{MC} \quad \text { or } \\
& \mathrm{MC}=4+\mathrm{Q}_{\mathrm{T}} / 20
\end{aligned}
$$

- And for $\mathrm{Q}_{\mathrm{T}}>20, \mathrm{Q}_{\mathrm{T}}=\mathrm{Q}_{\mathrm{L}}+\mathrm{Q}_{\mathrm{H}}$

$$
\begin{aligned}
& Q_{T}=-130+30 M C \quad \text { or } \\
& M C=13 / 3+Q_{T} / 30
\end{aligned}
$$

Adjustments to Current MR and MC

- When current production has future implications, the overall profit-maximizing output is typically not given by (current period) $\quad \mathrm{MC}_{0}=\mathrm{MR}_{0}$
- Learning: Additional production Q_{0} gives MR_{0} plus lower future costs C_{1}.
- Network Externalities: Additional production Q_{0} gives MR_{0} plus larger future revenue R_{1}.
- Produce more and lower price. How much depends on size of learning/network effects.

Take Away Points

- Nearly any firm has some degree of market power
- $\mathrm{MR}=\mathrm{MC} ; \quad \mathrm{MR}=\mathrm{MC} ; \mathrm{MR}=\mathrm{MC}$
(say 100 times)
- $\mathrm{MR}=\mathrm{MC}$ has a number of implications
- The mark-up formula summarizes optimal pricing
- With multiplant firms, $\mathrm{MR}=\mathrm{MC}_{\mathrm{H}}=\mathrm{MC}_{\mathrm{L}}$

