Overview: Market Power

- Competitive Equilibrium
- Profit Maximization
- Monopoly
 - Output and Price Analytics
- Coordination of Multiple Plants
- Pricing with Learning Effects and Network Externalities

Competitive Equilibrium

- Mechanism of Competitive Equilibrium
 - Demand Growth
 - Higher prices stimulate more supply from existing firms
 - · Emergence of profits causes entry/expansion of capacity
 - Demand shortfall
 - Lower prices cause cutbacks in in supply from existing firms
 - Losses (negative profits) cause exit/contraction of capacity
 - Processes continue until economic profits return to 0

Market Power

- Ability to raise price above costs and make sustainable profits
 - Economic costs and economic profits
- Requires that the mechanism of competition fails to operate
 - Barriers to entry
 - Sufficient product differentiation (that cannot be copied)
 - Secret technology No information on profitability
 - Market too small relative to efficient production scale

Direct Monopoly Solution

Profit: $\Pi = (100Q - Q^2) - 10Q$ Take derivative: $d \Pi/dQ = (100 - 2Q) - 10$ (= MR - MC)Profits are maximized where $d\Pi/dQ = 0$ 0 = (100 - 2Q) - 10 (= MR - MC) Q = 45With price P = 100 - Q = 55

MR in Detail

Approximate MR as ΔR from selling one more unit i.e., compare selling Q_0 at P_0 with selling $Q_1 = (Q_0+1)$ at P_1 [with $P_1 \le P_0$] MR = $R_1 - R_0 = P_1Q_1 - P_0Q_0$ = $P_1(Q_1 - Q_0) + Q_0(P_1 - P_0)$ = $P_1 + Q_0 \Delta P$

Example: Supermarkets and Convenience Stores

- Supermarkets: $\varepsilon \approx -10$ (P-MC)/P = .1, 10% markup
- Small convenience stores: $\varepsilon \approx -5$ (P-MC)/P = .2, 20% markup
- Which do you expect to show higher profits?

Algebra of Constructing MC Curve

Plant "H": $MC_H = 5 + Q/10$ Plant "L": $MC_L = 4 + Q/20$

- Up to Q=20, all production is at "L" and the cost curve is equal to the single plant supply curve (since MC_L(20) = MC_H(0) = 5)
- Above Q=20, some production occurs at "H"

Adjustments to Current MR and MC

- When current production has future implications, the overall profit-maximizing output is typically not given by (current period) $MC_0 = MR_0$
- Learning: Additional production Q₀ gives MR₀ *plus* lower future costs C₁.
- Network Externalities: Additional production Q₀ gives MR₀ *plus* larger future revenue R₁.
- Produce more and lower price. How much depends on size of learning/network effects.

Take Away Points

- Nearly any firm has some degree of market power
- MR = MC; MR = MC; MR = MC

(say 100 times)

- MR = MC has a number of implications
 - The mark-up formula summarizes optimal pricing
 - With multiplant firms, $MR = MC_H = MC_L$