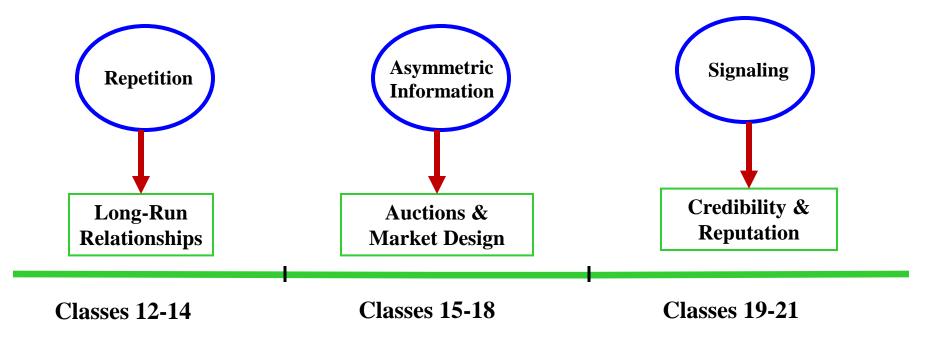
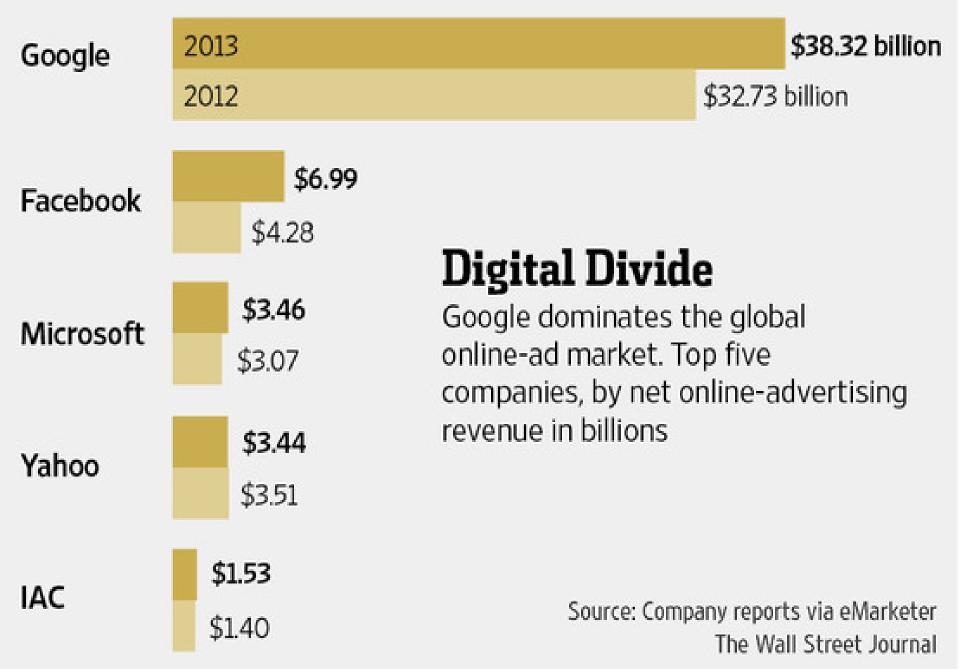
Game Theory for Strategic Advantage

15.025

Alessandro Bonatti MIT Sloan

Part III: "Big" Applications





Uncertainty Example: an Auction

- Two firms (GE vs. W) bid for a contract.
- The value of the contract to GE is $v_{GE} = $65M$.
- Say you are *GE*: how much do you bid?
- Do you have all the information you'd like?
- **GE** doesn't know **v**w.
- W doesn't know VGE.

Today's Class

- 1. Uncertainty in games
- 2. New equilibrium notion
- 3. Applications: basic auctions

Looking Ahead

- 1. Reserve prices & winners' curse
- 2. Online auctions
- 3. Designing auctions and markets

Uncertainty in Canonical Games

Game Type

- Prisoners' Dilemma
- Chicken / Entry
- Stag Hunt
- .
- Coordination
- Beauty contest

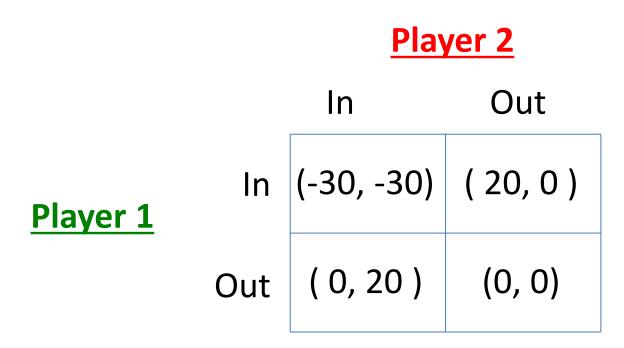
Source of Uncertainty

- Gain from defection
- Cost of acting tough / entry
- Go-it-alone value
- •
- Strength of common interest
- Opponents' sophistication

What game is my opponent seeing?

Our Old Entry Game

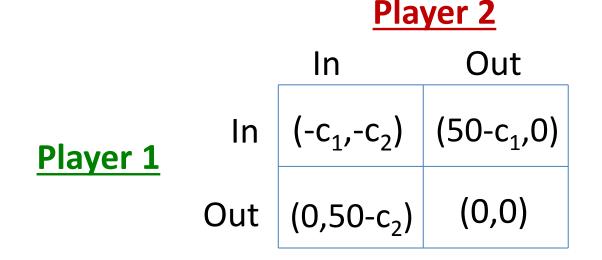
- The (gross) value of winning the market alone is 50.
- Each player *i*={1,2} has a cost 30 of investing.
- If both enter, price competition erases all (gross) profits



No dominated strategies

Entry Game Revisited

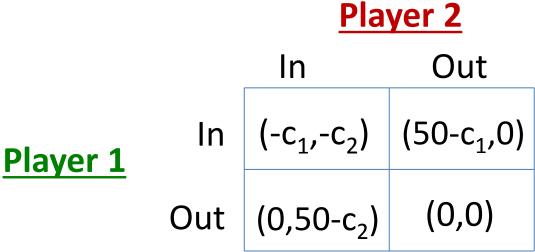
- The (gross) value of winning the market alone is 50.
- Each player *i*={1,2} has a cost *c*_i of entering.
- If both enter, price competition erases all (gross) profits



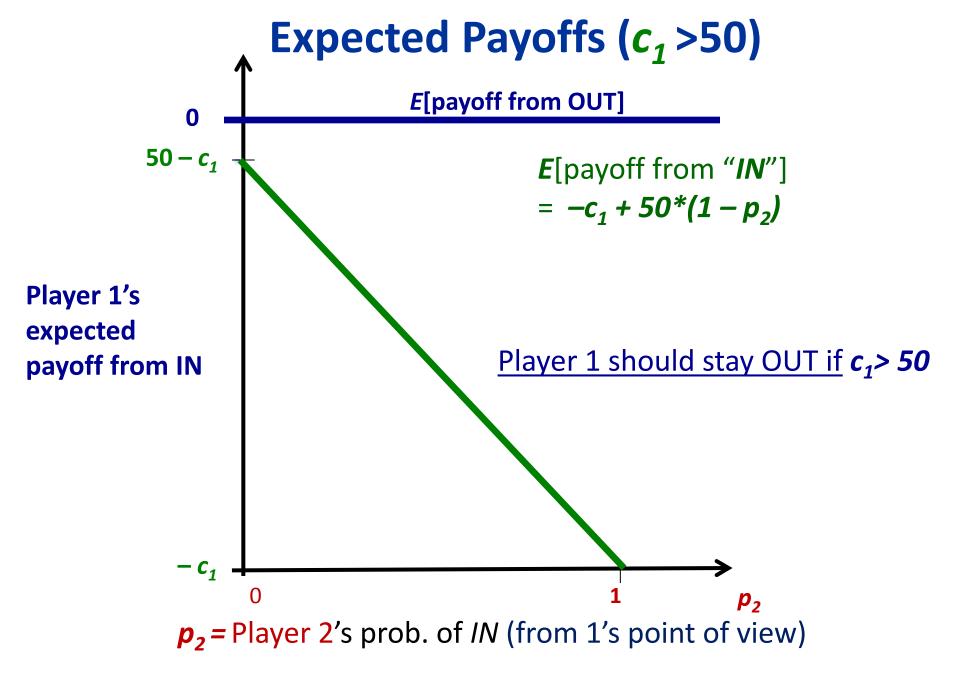
- Any dominated strategies?
- What if I'm not sure about Pl. 2's cost?

Information Structure

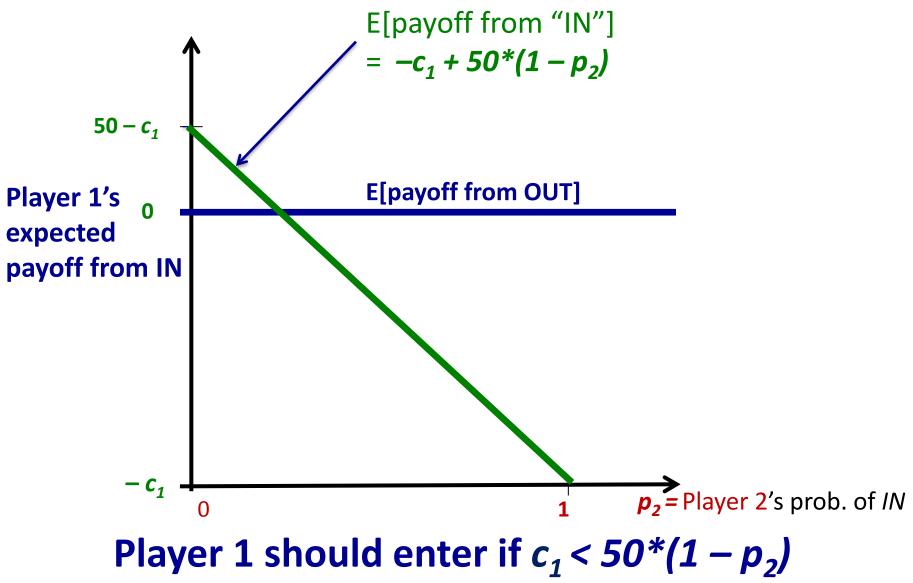
Each player's *c_i* is uniformly drawn from [0, 100]. The two draws are independent. Players <u>know their own cost only</u>.



• How to proceed? Let's play!!



Expected Payoffs (*c*₁ < 50)



MIT Sloan 15.025 Spring 2015

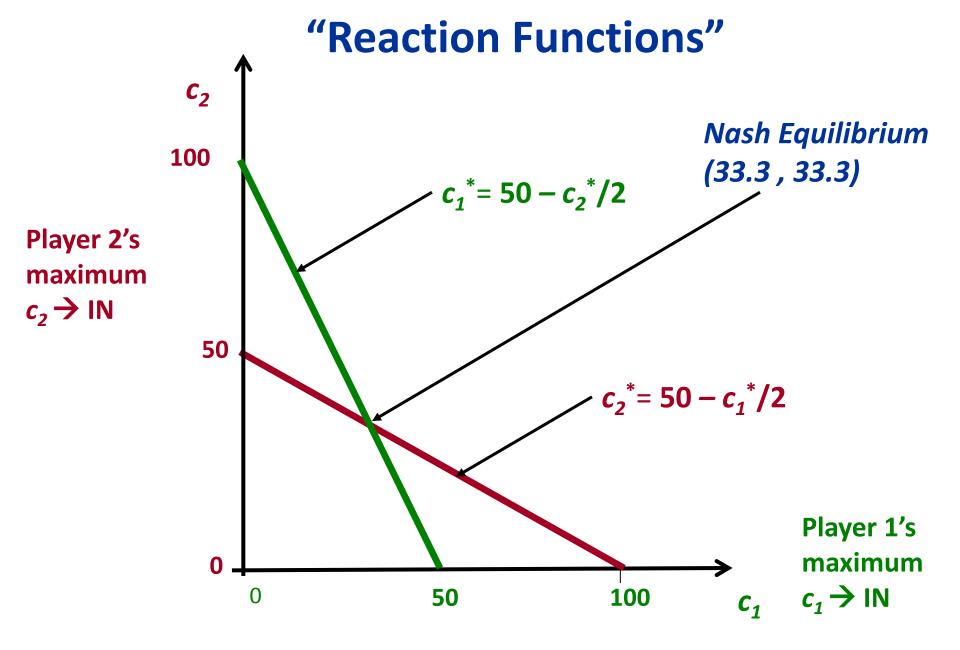
How Do I *Know* p_2 ?

For which cost levels does Pl. 2 choose IN?

- Suppose player 2 chooses IN if $c_2 < 50$.
- Then p_2 = Prob (*IN*) = Prob ($c_2 < 50$) = 0.5,
- Then Pl. 1 → IN if $c_1 < 25$. Which means $p_1 = 0.25$
- But then Pl. 2 should go IN if and only if $c_2 < 37.5$.
- ... which means Pl. 1 \rightarrow IN if $c_1 < 31.25$.

More general criterion: Reaction Functions

$$c_1 = 50(1-p_2) = 50(1-c_2/100) = 50 - c_2/2$$



Solving for Equilibrium

Equilibrium = two cut-offs (c_1^*, c_2^*) such that $c_1^* = \max(c_1) \rightarrow IN$ given that Pl. $2 \rightarrow IN$ if $c_2 < c_2^*$ $c_2^* = \max(c_2) \rightarrow IN$ given that Pl. $1 \rightarrow IN$ if $c_1 < c_1^*$

 $c_1^*(c_2^*) = 50 - c_2^*/2 \text{ and } c_2^*(c_1^*) = 50 - c_1^*/2$ $c_1^* = c_2^* = 100/3 = 33.3...$ $p_1 = p_2 = 1/3$ $E[payoff(IN)] = -c_i + 50^*(1-1/3) = 33.3 - c_i$

(Bayesian) Nash Equilibrium

• A Nash equilibrium of this (Bayesian) game is:

1) A critical value c_1 for Pl. 1 such that playing *IN* for costs below c_1 is a best response to Pl. 2's play

2) A critical value c_2 for Pl. 2 such that playing *IN* for costs below c_2 is a best response to Pl. 1's play

• Best response = maximize expected payoff!

Right and Wrong Information

- In the BNE, entry is profitable only if c<33.3
- Cost distribution: uniform [0, 100]
- Expected cost = 50
- <u>On average</u>, <u>my opponent's dominant strategy is OUT</u>
- Best response to expected cost = IN !! (given c<50)
- This uses the **wrong information**!! (expected cost)
- Right information: expected action (IN with Pr=1/3)
- Correct strategy: IN if c<33.3

15.025 Game Theory for Strategic Advantage Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.