Game Theory for

Strategic Advantage

15.025

Alessandro Bonatti MIT Sloan

Part III: "Big" Applications

Classes 15-18

Classes 19-21

Facebook

Microsoft

IAC

Digital Divide

Google dominates the global online-ad market. Top five companies, by net online-advertising revenue in billions

$\$ 1.53$

$\$ 1.40$
Source: Company reports via eMarketer
The Wall Street Journal

Uncertainty Example: an Auction

- Two firms (GE vs. W) bid for a contract.
- The value of the contract to $\mathbf{G E}$ is $\boldsymbol{V}_{G E}=\mathbf{\$ 6 5 M}$.
- Say you are GE: how much do you bid?
- Do you have all the information you'd like?
- GE doesn't know $\boldsymbol{V} w$.
- W doesn't know Vge.

Today's Class

1. Uncertainty in games
2. New equilibrium notion
3. Applications: basic auctions

Looking Ahead

1. Reserve prices \& winners' curse
2. Online auctions
3. Designing auctions and markets

Uncertainty in Canonical Games

Game Type

- Prisoners' Dilemma
- Chicken / Entry
- Stag Hunt
- Coordination
- Beauty contest

Source of Uncertainty

- Gain from defection
- Cost of acting tough / entry
- Go-it-alone value
- Strength of common interest
- Opponents' sophistication

What game is my opponent seeing?

Our Old Entry Game

- \quad The (gross) value of winning the market alone is 50.
- Each player $i=\{1,2\}$ has a cost 30 of investing.
- If both enter, price competition erases all (gross) profits

Player 2

- No dominated strategies

Entry Game Revisited

- The (gross) value of winning the market alone is 50.
- Each player $i=\{1,2\}$ has a cost c_{i} of entering.
- If both enter, price competition erases all (gross) profits

- Any dominated strategies?
- What if I'm not sure about PI. 2's cost?

Information Structure

Each player's c_{i} is uniformly drawn from [0, 100].
The two draws are independent. Players know their own cost only.

Player 2

		In	Out
	In	$\left(-c_{1},-c_{2}\right)$	$\left(50-c_{1}, 0\right)$
	Player 1		
	Out	$\left(0,50-c_{2}\right)$	$(0,0)$

- How to proceed? Let's play!!

Expected Payoffs ($c_{1}<50$)

How Do I Know p_{2} ?

For which cost levels does PI. 2 choose IN?

- Suppose player 2 chooses IN if $c_{2}<50$.
- Then $p_{2}=\operatorname{Prob}(I N)=\operatorname{Prob}\left(c_{2}<50\right)=0.5$,
- Then PI. $1 \rightarrow$ IN if $c_{1}<25$. Which means $p_{1}=0.25$
- But then PI. 2 should go IN if and only if $c_{2}<37.5$.

■ ... which means PI. $1 \rightarrow$ IN if $c_{1}<31.25$.
More general criterion: Reaction Functions

$$
c_{1}=50\left(1-p_{2}\right)=50\left(1-c_{2} / 100\right)=50-c_{2} / 2
$$

"Reaction Functions"

Player 2's maximum $c_{2} \rightarrow \mathrm{IN}$

Solving for Equilibrium

■ Equilibrium = two cut-offs $\left(c_{1}{ }^{*}, c_{2}{ }^{*}\right)$ such that - $c_{1}{ }^{*}=\max \left(c_{1}\right) \rightarrow I N$ given that PI. $2 \rightarrow I N$ if $c_{2}<c_{2}{ }^{*}$

- $c_{2}{ }^{*}=\max \left(c_{2}\right) \rightarrow I N$ given that PI. $1 \rightarrow I N$ if $c_{1}<c_{1}{ }^{*}$
- $c_{1}{ }^{*}\left(c_{2}{ }^{*}\right)=50-c_{2}{ }^{*} / 2$ and $c_{2}{ }^{*}\left(c_{1}{ }^{*}\right)=50-c_{1}{ }^{*} / 2$
- $c_{1}{ }^{*}=c_{2}{ }^{*}=100 / 3=33.3$...
- $p_{1}=p_{2}=1 / 3$

■ $E[$ payoff $(I N)]=-c_{i}+50 *(1-1 / 3)=33.3-c_{i}$

(Bayesian) Nash Equilibrium

- A Nash equilibrium of this (Bayesian) game is:

1) A critical value c_{1} for Pl .1 such that playing $I N$ for costs below c_{1} is a best response to PI. 2's play
2) A critical value c_{2} for Pl .2 such that playing $I N$ for costs below c_{2} is a best response to PI. 1's play

- Best response = maximize expected payoff!

Right and Wrong Information

- In the BNE, entry is profitable only if $\mathrm{c}<33.3$
- Cost distribution: uniform [0,100]
- Expected cost = 50
- On average, my opponent's dominant strategy is OUT
- Best response to expected cost = IN !! (given c<50)
- This uses the wrong information!! (expected cost)
- Right information: expected action (IN with $\operatorname{Pr}=1 / 3$)
- Correct strategy: IN if c<33.3

MIT OpenCourseWare
http://ocw.mit.edu

15.025 Game Theory for Strategic Advantage

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

