Game Theory

for
 Strategic Advantage

15.025

Alessandro Bonatti
MIT Sloan

Classic Examples

- Government
- T-Bills, mineral rights (e.g. oil fields), assets (e.g. privatization)
- Electromagnetic spectrum
- Public construction contracts (e.g., California Highways)
- Internet
- Display \& keyword advertising, personal data (cookies)
- Real Estate
- Development contracts
- individual homes
- Stocks
- IPOs, Repurchases, M\&A
- Auctions in disguise
- Patent races, Lobbying, Legal disputes, hiring

First-Price Auction

How should you bid?

Is bidding your total valuation $\boldsymbol{v}_{\boldsymbol{i}}$ a good strategy?

How much to shade?

New approach: types of your opponent
(i.e., when to win and when to lose)

Your Bids

Setting Up the Problem

- You bid to maximize your expected payoff
- Make a projection about the other bidder's strategy
- Presumably this strategy depends on the valuation that bidder has.
- Let $\mathbf{b}_{j}\left(\boldsymbol{v}_{j}\right)$ be your projection for the bid of the other bidder when their valuation is $\boldsymbol{v}_{\boldsymbol{j}}$.

Bidders Problem

- Suppose your value is $\boldsymbol{v}_{\boldsymbol{i}}=\boldsymbol{v}$.
- Choose a bid, B, to maximize expected profits.
- $E[$ Profit $]=(v-B) * \operatorname{Pr}(B$ is the highest bid)
- $\operatorname{Pr}(B$ is the highest bid $)=\operatorname{Pr}\left(B>b_{j}\left(v_{j}\right)\right)$

What is My Optimal Bid?

Bidder's Problem Revisited

- So now you must choose \boldsymbol{B} to maximize $-E[P r o f i t]=(v-B) * B / a$
- Differentiate with respect to \boldsymbol{B}
$-(v-2 B) / a=0$
$-\mathrm{B}=v_{i} / 2$
- If your opponent shades proportionally to his value \rightarrow bid half your value.

Equilibrium

- My rival is doing the same calculation as me.
- If he conjectures that I bid $1 / 2$ my value
- He should bid $1 / 2$ his value (for the same reasons)
- Therefore, in equilibrium, we each bid half our value.
- More generally, with N bidders, bids $=\mathbf{v}^{*}(\mathrm{~N}-\mathbf{1}) / \mathrm{N}$

Your Bids (3 bidders)

Equilibrium: bid = .67* value

Bayesian Nash Equilibrium

- Uncertainty over rival's payoffs in this game
- Best-respond to expectation of your rival's strategy
- Your rival does likewise
- Mutual best responses in this setting are called

Bayes-Nash Equilibrium.

M\&A Auction Game

1) Want to acquire a large (2-division) company
2) You will bid for the company's stock
3) The company's true value = sum of two divisions' values
4) Your firm has expertise in one area
5) Can estimate the value of one division / sector
6) Uncertain about the rest of the company

Wallets Game

1) Check how much cash is in your wallet.
2) That is your (perfect) estimate of 1 division.
3) I will randomly match you with 1 other bidder.
4) Bid for the company's stock (= sum of wallets)

The Bidder's Problem

- Your wallet contains v dollars.
- The other bidder's wallet contains \mathbf{x} dollars.
- You don't know x, but it is randomly (uniformly) drawn from 0 to 100.
- The company is worth $\mathbf{v}+\mathbf{x}$.
- You conjecture a bidding strategy b(x)
- Choose a bid, B, to maximize expected profits:

$$
\begin{aligned}
& \mathbf{u}=\mathbf{v + x} \mathbf{- B} \text { if you win and loser's value is } \mathbf{x} \\
& \mathbf{u}=\text { zero if you lose }
\end{aligned}
$$

Cautious Opponents

- Suppose your opponent thinks as follows:

1. "I am afraid the other wallet is empty."
2. "I will never bid more than my wallet's content."
3. "So l'll just bid $b(x)=x$."

- How do you respond to $\mathbf{b}(\mathbf{x})=x$?
- What are your profits if you win against opponent \mathbf{x} ?

$$
v+x-B
$$

How Should you Bid?

- $\operatorname{Pr}[$ win | $B]=B / 100$
- Maximize ($v+x-B$) B ?
- Choose $B=(v+x) / 2$... Don't know x
- so I should bid $(v+50) / 2=25+v / 2$? Right? When you win, $\mathbf{x}<\boldsymbol{B}$!
- Maximize (v+B/2-B)B
$\rightarrow \mathrm{v}-\mathrm{B}=0 \rightarrow \mathrm{~B}=\mathrm{v}!$!
\rightarrow Bid just your wallet's content!

Lessons from Wallets

- Suppose your opponent bids aggressively (a>1)
- Avoid the winner's curse
- Suppose your opponent is overly cautious ($\mathrm{a}<1$)
- Take advantage of it!!

Seller Revenues

- Common-value auctions: revenue equivalence holds only under very special circumstances (symmetry)
- Open- or sealed bid? Are SPA and English auction still strategically equivalent?
- In general, winner's curse \rightarrow English > SPA > FPA
- Instructive for the history of online ad auctions...

MIT OpenCourseWare
http://ocw.mit.edu

15.025 Game Theory for Strategic Advantage

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

