Game Theory for Strategic Advantage

15.025

Alessandro Bonatti MIT Sloan

Classic Examples

- Government
 - T-Bills, mineral rights (e.g. oil fields), assets (e.g. privatization)
 - Electromagnetic spectrum
 - Public construction contracts (e.g., California Highways)
- Internet
 - Display & keyword advertising, personal data (cookies)
- Real Estate
 - Development contracts
 - individual homes
- Stocks
 - IPOs, Repurchases, M&A
- Auctions in disguise
 - Patent races, Lobbying, Legal disputes, hiring

First-Price Auction

How *should* you bid?

Is bidding your total valuation v_i a good strategy?

How much to shade?

New approach: types of your opponent (i.e., when to win and when to lose)

Your Bids

Date of Birth

Bid

Setting Up the Problem

- You bid to maximize your expected payoff
- Make a **projection** about the other bidder's strategy
- Presumably this strategy depends on the valuation that bidder has.
- Let b_j(v_j) be your projection for the bid of the other bidder when their valuation is v_j.

Bidders Problem

• Suppose your value is $v_i = v$.

• Choose a bid, B, to maximize expected profits.

- E[Profit] = (v B) * Pr(B is the highest bid)
- Pr(B is the highest bid) = Pr(B > b_j(v_j))

What is My Optimal Bid?

Bidder's Problem Revisited

- So now you must choose *B* to maximize
 *E[Profit] = (v B)*B/a*
- Differentiate with respect to **B**

$$-(v - 2B)/a = 0$$

$$-B = v_i/2$$

If your opponent shades <u>proportionally</u> to his value → bid <u>half</u> your value.

Equilibrium

- My rival is doing the same calculation as me.
 If he conjectures that I bid ½ my value
 - He should bid ½ his value (for the same reasons)
- Therefore, in **equilibrium**, we each bid half our value.
- More generally, with N bidders, bids = v*(N-1)/N

Your Bids (3 bidders)

Bayesian Nash Equilibrium

- Uncertainty over rival's payoffs in this game
- Best-respond to *expectation* of your rival's strategy
- Your rival does likewise
- Mutual best responses in this setting are called *Bayes-Nash Equilibrium*.

M&A Auction Game

- 1) Want to acquire a large (2-division) company
- 2) You will bid for the **company's stock**
- 3) The company's **true value = sum of two divisions' values**
- 4) Your firm has expertise in one area
- 5) Can estimate the value of one division / sector
- 6) Uncertain about the rest of the company

Wallets Game

1) Check how much cash is in your wallet.

2) That is your (perfect) estimate of 1 division.

3) I will randomly match you with **1 other bidder**.

4) Bid for the company's stock (= sum of wallets)

The Bidder's Problem

- Your wallet contains **v** dollars.
- The other bidder's wallet contains **x** dollars.
- You don't know **x**, but it is randomly (uniformly) drawn from **0** to **100**.
- The company is worth **v** + **x**.
- You conjecture a bidding strategy **b(x)**
- Choose a bid, **B**, to maximize expected profits:
 - **u** = **v**+**x**-**B** if you win and loser's value is **x**
 - **u** = **zero** if you lose

Cautious Opponents

- Suppose your opponent thinks as follows:
 - 1. "I am afraid the other wallet is empty."
 - 2. "I will never bid more than my wallet's content."
 - 3. "So I'll just bid **b(x) = x**."
- How do you respond to **b(x)=x**?
- What are your profits if you win <u>against opponent x</u>?

v+x-B

How Should you Bid?

- Pr [win | B] = B / 100
- Maximize (v+x-B)B?
- Choose $B = (v+x)/2 \dots Don't know x$
- so I should bid (v+50)/2 = 25 + v/2? Right?

When you win, **x** < **B**!

• Maximize (v+B/2-B)B

 $\rightarrow v - B = 0 \Rightarrow B = v!!$

\rightarrow Bid just your wallet's content!

Lessons from Wallets

- Suppose your opponent bids aggressively (a>1)
- Avoid the winner's curse
- Suppose your opponent is overly cautious (a<1)
- Take advantage of it!!

Seller Revenues

- Common-value auctions: revenue equivalence holds only under very special circumstances (symmetry)
- Open- or sealed bid? Are SPA and English auction still strategically equivalent?
- In general, winner's curse → English > SPA > FPA
- Instructive for the history of online ad auctions...

15.025 Game Theory for Strategic Advantage Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.