15.053/8

March 19, 2013

Integer Programming Formulations 2

references:IP Formulation Guide (on the website)Tutorial on IP formulations.Applied Math Programming

announcement on meetings of teams with staff

Quote of the Day

"What chiefly characterizes creative thinking from more mundane forms are (i) willingness to accept vaguely defined problem statements and gradually structure them, (ii) continuing preoccupation with problems over a considerable period of time, and (iii) extensive background knowledge in relevant and potentially relevant areas."

-- Herbert Simon

Overview of today's lecture

- Very quick review of integer programming
- Building blocks for creating IP models
- Logical constraints
- Non-linear functions
- IP models that generalize the assignment problem or transportation problem
- Other combinatorial problems modeled as IPs

Integer Programs

Integer programs: a linear program plus the additional constraints that some or all of the variables must be integer valued.

We also permit " $x_j \in \{0,1\}$," or equivalently, " x_j is binary" This is a shortcut for writing the constraints: $0 \le x_j \le 1$ and x_j integer.

Trading for Profit (from last lecture)

Prize	iPad 1	server 2	Brass Rat 3	Au Bon Pain 4	6.041 tutoring <mark>5</mark>	15.053 dinner <mark>6</mark>
Points	5	7	4	3	4	6
Utility	16	22	12	8	11	19

Budget: 14 IHTFP points.

Write Nooz's problem as an integer program. Let $x_i = \begin{cases} 1 & \text{if prize i is selected} \\ 0 & \text{otherwise} \end{cases}$

Modeling logical constraints that include only two binary variables.

Modeling logical constraints with two variables can be accomplished in two steps:

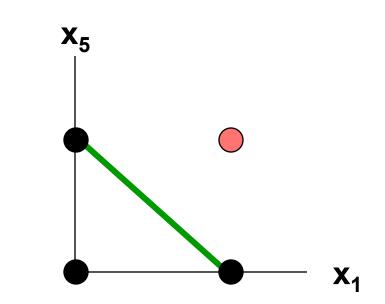
Step 1. Graph the feasible region as restricted to the two variables.

Step 2. Add linear equalities and or inequalities so that the feasible region of the IP is the same as that given in Step 1.

Logical Constraints 1

Constraint 1. If you select the iPad, you cannot select 6.041

x₁ = 1 if iPad x₅ = 1 if 6.041



MIP Constraint:

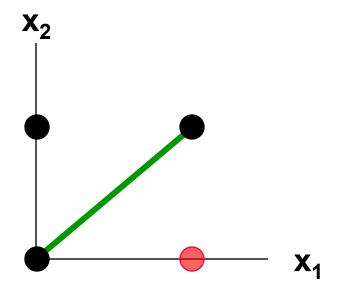
$$x_1 + x_5 \le 1$$

Logical Constraints 2

Constraint 2. If Prize 1 is selected then Prize 2 must be selected.

 $\mathbf{x}_1 = \mathbf{1}$ if iPad

 $x_2 = 1$ if server

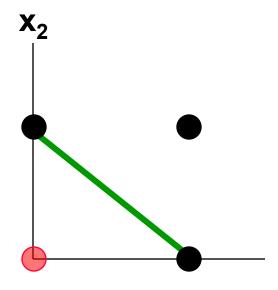


MIP Constraint: $x_1 \le x_2$

Logical Constraints 3

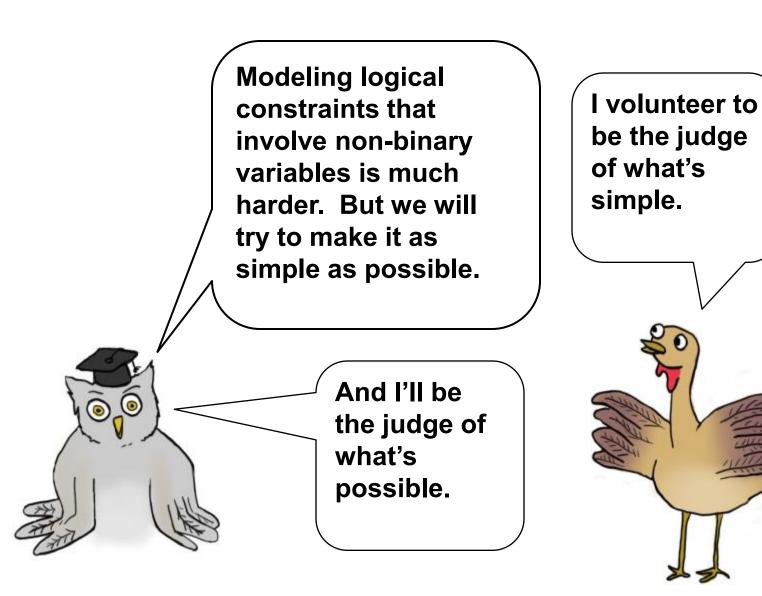
- $\mathbf{x}_1 = \mathbf{1}$ if iPad
- $x_2 = 1$ if server

Constraint 3. You must select Prize 1 or Prize 2 or both



MIP Constraint: $x_1 + x_2 \ge 1$

Other logical constraints



BIG M Method for IP Formulations

- Assume that all variables are integer valued.
- Assume a bound u* on coefficients and variables;

• Choose M really large so that for every constraint i,

 $|a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n| \le b_i + M$

That is, we will be able to satisfy any "≤" constraint by adding M to the RHS.

And we can satisfy any "≥" constraint by subtracting M from the RHS.

The logical constraint " $x \le 2$ or $x \ge 6$ "

We formulate the logical constraint,

" $x \le 2$ or $x \ge 6$ " as follows.

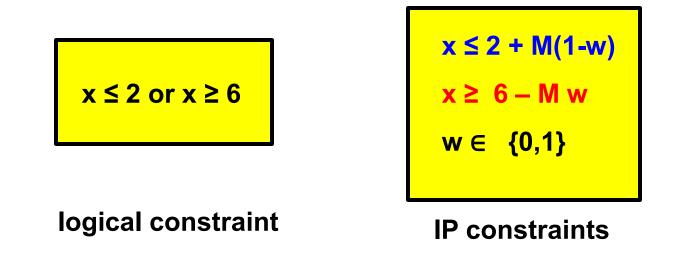
Choose a binary variable w so that if w = 1, then $x \le 2$. if w = 0, then $x \ge 6$.

 $x \le 2 + M(1-w)$ $x \ge 6 - M w$ $w \in \{0,1\}$ **To validate the formulation one needs to show:** The logical constraints are equivalent to the IP constraints.

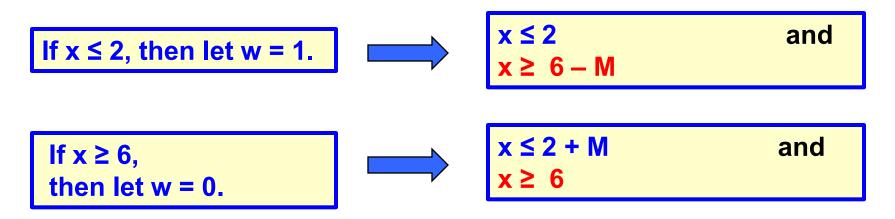
Suppose that (x, w) is feasible, for the IP.

If w = 1, then $x \le 2$.

If
$$w = 0$$
, then $x \ge 6$.



Suppose that x satisfies the logical constraints.



In both cases, the IP constraints are satisfied.

Modeling "or constraints"

$$x_1 + 2x_2 \ge 12$$
 or
 $4x_2 - 10x_3 \le 1$.

Logical constraints.

Suppose that x_i is bounded for all i.

 $x_1 + 2x_2 \ge 12 - M(1-w)$ $4x_2 - 10x_3 \le 1 + Mw.$

IP constraints.

Suppose that M is very large.

To show: The logical constraints are equivalent to the IP constraints.

Suppose that (x, w) is feasible, for the IP.

If w = 1, then
$$x_1 + 2x_2 \ge 12$$

If w = 0, then $4x_2 - 10x_3 \le 1$

Therefore, the logical constraints are satisfied.

$$x_1 + 2x_2 \ge 12$$
 or
 $4x_2 - 10x_3 \le 1$.

Logical constraints.

Suppose that x_i is bounded for all i.

 $x_1 + 2x_2 \ge 12 - M(1-w)$ $4x_2 - 10x_3 \le 1 + Mw.$

IP constraints.

Suppose that M is very large.

To show: The logical constraints are equivalent to the IP constraints.

Suppose that x satisfies the logical constraints.

If $x_1 + 2x_2 \ge 12$,
then let w = 1 $x_1 + 2x_2 \ge 12$
 $4x_2 - 10x_3 \le 1 + M$.AND
 $4x_2 - 10x_3 \le 1 + M$.Else $4x_2 - 10x_3 \le 1$
then let w = 0 $x_1 + 2x_2 \ge 12 - M$
 $4x_2 - 10x_3 \le 1$.AND
 $4x_2 - 10x_3 \le 1$.

In both cases, the IP constraints are satisfied.

Mental Break

Fixed charge problems

- Suppose that there is a linear cost of production, after the process is set up.
- There is a cost of setting up the production process.
- The process is not set up unless there is production.

The Alchemist's Problem

In 1502, the alchemist Zor Primal has set up shop creating gold, silver, and bronze medallions to celebrate the 10th anniversary of the discovery of America. His trainee alchemist (TA) makes the medallions out of lead and pixie dust. Here is the data table.

	Gold	Silver	Bronze	Available
TA labor (days)	2	4	5	100
lead (kilos)	1	1	1	30
pixie dust (grams)	10	5	2	204
Profit (\$)	52	30	20	

Zor is unable to get any of his reactions going without an expensive set up.

Cost to set up	\$500	\$400	\$300	
----------------	-------	-------	-------	--

Zor's problem with set up costs Maximize $f_1(x_1) + f_2(x_2) + f_3(x_3)$ subject to $2 x_1 + 4 x_2 + 5 x_3 \le 100$ $1 x_1 + 1 x_2 + 1 x_3 \le 30$ $10 x_1 + 5 x_2 + 2 x_3 \le 204$ $x_1, x_2, x_3 \ge 0$ integer

$$f_{1}(x_{1}) = \begin{cases} -500 + 52x_{1} & \text{if } x_{1} \ge 1 \\ 0 & \text{if } x_{1} = 0 \end{cases} \qquad \text{Let } w_{1} = \begin{cases} 1 & x_{1} \ge 1 \\ 0 & x_{1} = 0. \end{cases}$$
$$f_{2}(x_{2}) = \begin{cases} -400 + 30x_{2} & \text{if } x_{2} \ge 1 \\ 0 & \text{if } x_{2} = 0 \end{cases} \qquad \text{Let } w_{2} = \begin{cases} 1 & x_{2} \ge 1 \\ 0 & x_{2} = 0. \end{cases}$$
$$f_{3}(x_{3}) = \begin{cases} -300 + 20x_{3} & \text{if } x_{3} \ge 1 \\ 0 & \text{if } x_{3} = 0 \end{cases} \qquad \text{Let } w_{3} = \begin{cases} 1 & x_{3} \ge 1 \\ 0 & x_{3} = 0. \end{cases}$$

The IP Formulation

$$f_{1}(x_{1}) = \begin{cases} -500 + 52x_{1} & \text{if } x_{1} \ge 1 \\ 0 & \text{if } x_{1} = 0 \end{cases}$$

$$w_{j} = \begin{cases} 1 & x_{j} \ge 1 \\ 0 & x_{j} = 0 \end{cases}$$

$$f_{2}(x_{2}) = \begin{cases} -400 + 30x_{2} & \text{if } x_{2} \ge 1 \\ 0 & \text{if } x_{2} = 0 \end{cases}$$

$$f_{3}(x_{3}) = \begin{cases} -300 + 20x_{3} & \text{if } x_{3} \ge 1 \\ 0 & \text{if } x_{3} = 0 \end{cases}$$
Max
-500 w_{1} + 52 x_{1} - 500 w_{2} + 30 x_{2} - 300 w_{3} + 20 x_{3}
s.t.

$$2 x_{1} + 4 x_{2} + 5 x_{3} \le 100$$

$$1 x_{1} + 1 x_{2} + 1 x_{3} \le 30$$

$$10 x_{1} + 5 x_{2} + 2 x_{3} \le 204$$

$$x_{1} \le M w_{1}; \quad x_{2} \le M w_{2}; \quad x_{3} \le M w_{3};$$

$$x_{1}, x_{2}, x_{3} \ge 0 \quad \text{integer}$$

$$w_{1}, w_{2}, w_{3} \in \{0, 1\}.$$

The IP formulation correctly models the fixed charges.

To show:

- 1. If x is feasible for the fixed charge problem, then (x, w) is feasible for the IP (w is defined on the last slide), and the cost in the IP matches the cost of the fixed charge problem.
- 2. If (x, w) is feasible for the IP, then x is feasible for the fixed charge problem, and the IP cost is the same as the cost in the fixed charge problem.

Suppose that x is feasible for the fixed charge problem.

If $x_i \ge 1$, then let $w_i = 1$. Otherwise $w_i = 0$.

Then (x, w) is feasible for the IP, and the objective value for the IP is the same as for the fixed charge problem.

Suppose that (x, w) is feasible for the IP.

We say that (x, w) is a sensible if the following is true for each i: if $x_i = 0$, then $w_i = 0$.

Remark: if (x, w) is not sensible, then it cannot be optimal.

Claim. If (x, w) is feasible for the IP and if it is also sensible, then x is feasible for the fixed charge problem, and the IP cost is the same as the cost in the fixed charge problem.

x is clearly feasible for the fixed charge problem. Consider x_1 .

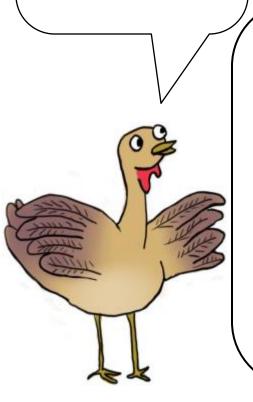
If $x_1 \ge 1$, then $w_1 = 1$ and the cost is $-500 + 52x_1$.

If $x_1 = 0$, then $w_1 = 0$ and the cost is 0.

Thus, the cost of x_1 is the same for both problems. Similarly, the cost of x_2 and x_3 are the same.

 $x_j \leq 30 w_j$ for j = 1, 2, 3

First of all, I'm really unsure about what coefficient values to use. It seems very confusing.



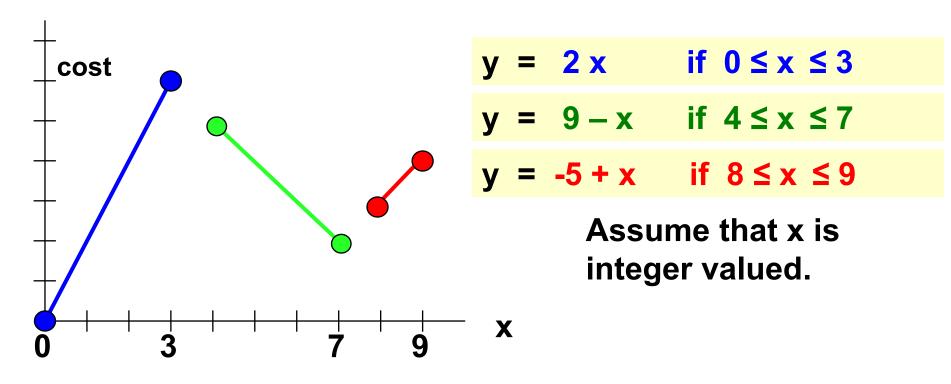
All that really matters is that the number is sufficiently high so that for any feasible x for the fixed charge problem, one can obtain a feasible w for the IP.

The constraint: " $x_j \le 10 w_j$ " isn't correct because x_1 is permitted to be greater than 10 in the fixed charge problem.

On the other hand, the constraint " $x_i \leq 1000 w_i$ " is correct.

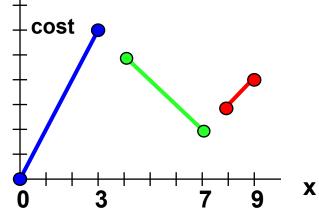
However, larger coefficients can make problems harder to solve. We say more about this in two lectures.

Modeling piecewise linear functions.



We will create an IP formulation so that the variable y is correctly modeled.

Create new binary and integer variables.



y = 2xif $0 \le x \le 3$ y = 9 - xif $4 \le x \le 7$ y = -5 + xif $8 \le x \le 9$

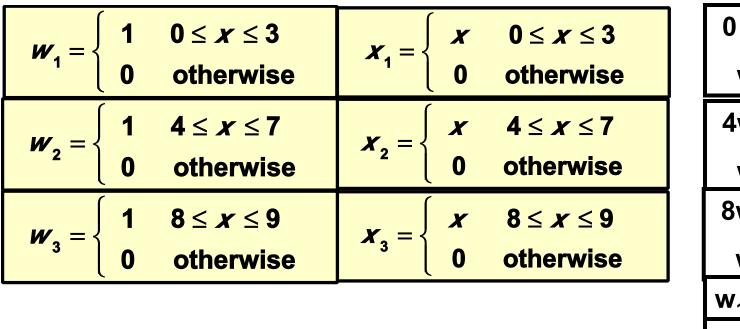
x is integer valued.

$w_1 = \begin{cases} 1 & 0 \le x \le 3 \\ 0 & \text{otherwise} \end{cases}$	$\boldsymbol{x}_{1} = \begin{cases} \boldsymbol{x} & \boldsymbol{0} \leq \boldsymbol{x} \leq \boldsymbol{3} \\ \boldsymbol{0} & \text{otherwise} \end{cases}$
$w_{2} = \begin{cases} 1 & 4 \le x \le 7 \\ 0 & \text{otherwise} \end{cases}$	$\boldsymbol{x}_2 = \begin{cases} \boldsymbol{x} & \boldsymbol{4} \leq \boldsymbol{x} \leq \boldsymbol{7} \\ \boldsymbol{0} & \text{otherwise} \end{cases}$
$w_{3} = \begin{cases} 1 & 8 \le x \le 9 \\ 0 & \text{otherwise} \end{cases}$	$\boldsymbol{X}_{3} = \begin{cases} \boldsymbol{X} & \boldsymbol{8} \leq \boldsymbol{X} \leq \boldsymbol{9} \\ \boldsymbol{0} & \text{otherwise} \end{cases}$

If the variables are defined as above, then $y = 2x_1 + (9w_2 - x_2) + (-5w_3 + x_3)$

Add constraints

Definitions of the variables.



Constraints

0 ≤ x ₁	≤ 3	W ₁
--------------------	-----	-----------------------

$$4w_2 \le x_2 \le 7 w_2$$

$$8w_3 \le x_3 \le 9 w_3$$

$$w_1 + w_2 + w_3 = 1$$

$$x = x_1 + x_2 + x_3$$

x_i integer ∀ i

Suppose that $0 \le x \le 9$, x integer.

If (x, w) satisfies the definitions, then it also satisfies the constraints.

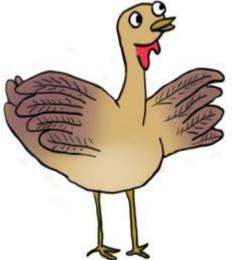
If (x, w) satisfies the constraints, then it also satisfies the definitions.



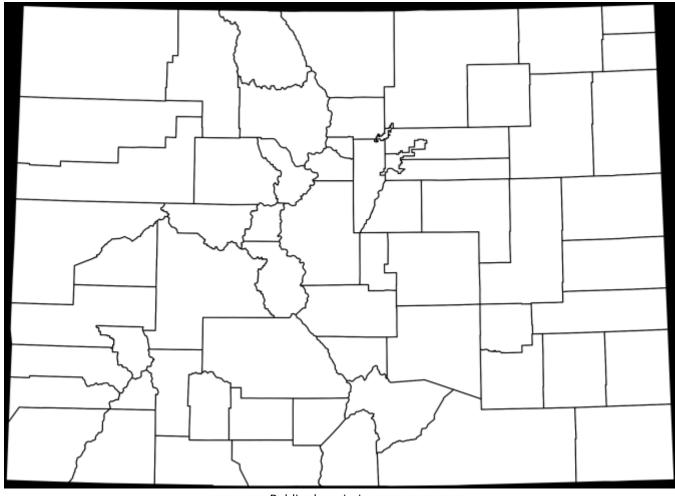
It's not really hard. It's just clever. I like that in a formulation.

It's another IP formulation trick, and it's a very useful one.

By the way, on the quiz and midterm, most of the formulation techniques will be on a sheet of notes that will be given to you.



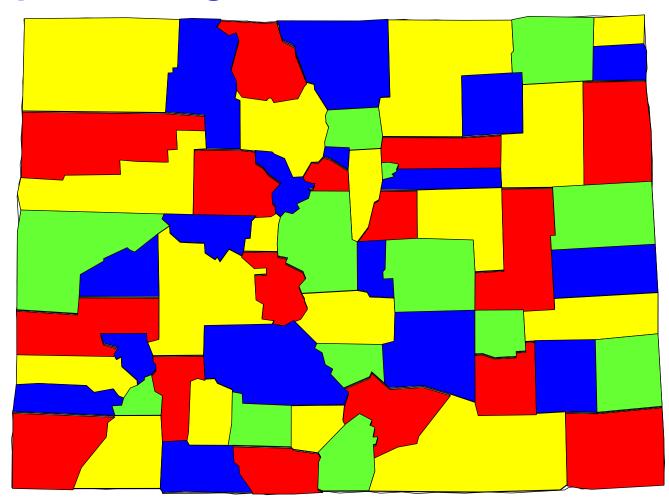
Graph Coloring



Public domain image.

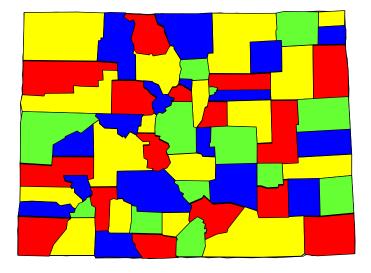
This is a map of the counties in Colorado. What is the fewest number of colors need to color all of the counties so that no counties with a common border have the same color?

Graph Coloring



Here is a four coloring of the map.

Graph Coloring Problem



$$G = (N, A)$$

k

A = set of arcs. (i, j) ∈ A if counties i and j are adjacent.

Exercise: write an integer program whose solution gives the minimum number of colors to color a map.

$$\mathbf{y}_{k} = \begin{cases} 1 & \text{if color } \mathbf{k} \text{ is used} \\ 0 & \text{if color } \mathbf{k} \text{ is not used} \end{cases}$$
$$\mathbf{x}_{ik} = \begin{cases} 1 & \text{if region } \mathbf{i} \text{ is given color} \\ 0 & \text{otherwise} \end{cases}$$

The Integer Programming Formulation

 $\boldsymbol{y}_{k} = \begin{cases} 1 & \text{if color } \boldsymbol{k} \text{ is used} \\ 0 & \text{if color } \boldsymbol{k} \text{ is not used} \end{cases}$ $\sum_{k} \mathbf{y}_{k}$ Min s.t $\sum_{k} \mathbf{X}_{ik} = 1$ $\forall i \in \mathbf{N}$ $X_{ik} + X_{ik} \le 1$ for $(i, j) \in A$ and for k = 1 to 4 $\boldsymbol{X}_{ik} \leq \boldsymbol{Y}_{k}$ for $i \in N$ and for k = 1 to 4 *X*_{*ik*} ∈ {0, 1} y, ∈ {0, 1}

 $\boldsymbol{X}_{ik} = \begin{cases} 1 & \text{if region } i \text{ is given color } k \\ 0 & \text{otherwise} \end{cases}$

Minimize the number of colors.

Each county is given a color.

If counties i and j share a common boundary, then they are not both assigned color k.

If county i is assigned color k, then color k is used.

An Exam Scheduling Problem (coloring)

The University of Waterloo has to schedule 500 exams in 28 exam periods so that there are no exam conflicts.

$$G = (N, A)$$

$$N = \{1, 2, 3, ..., n\} \text{ set of exams.} 28 \text{ periods.}$$

$$A = \text{set of arcs.}$$

$$(i, j) \in A \text{ if a person needs to take exam i and exam j.}$$

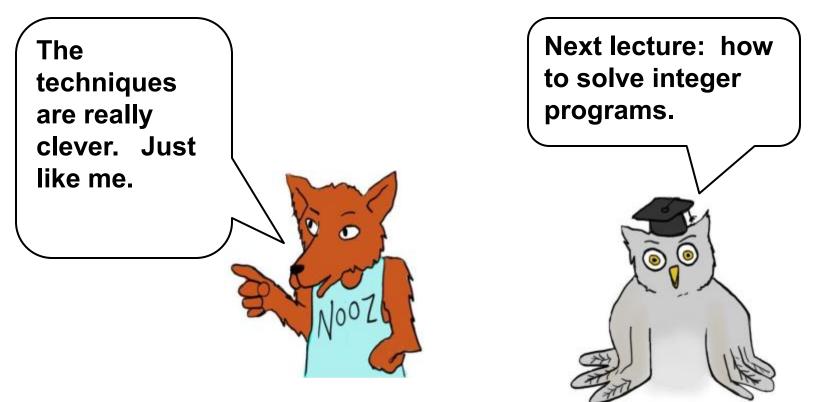
$$\boldsymbol{x}_{ik} = \begin{cases} 1 \text{ if exam } i \text{ is assigned in period } k \\ 0 \text{ otherwise} \end{cases}$$

$$X_{ik} + X_{jk} \leq 1$$
 for $(i, j) \in A$ and $\forall k \in [1, 28]$

Equivalently, can the exam conflict graph be colored with 28 colors?

Summary

- IPs can model almost any combinatorial optimization problem.
- Lots of transformation techniques.



15.053 Optimization Methods in Management Science Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.