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Quote of the Day 

“What chiefly characterizes creative thinking from 
more mundane forms are (i) willingness to accept 
vaguely defined problem statements and gradually 
structure them, (ii) continuing preoccupation with 
problems over a considerable period of time, and (iii) 
extensive background knowledge in relevant and 
potentially relevant areas.”  
 --  Herbert Simon 

http://www.brainyquote.com/quotes/quotes/h/herbertsim181928.html


Overview of today’s lecture 

 Very quick review of integer programming 

 Building blocks for creating IP models 

 Logical constraints 

 Non-linear functions 

 IP models that generalize the assignment 
problem or transportation problem 

 Other combinatorial problems modeled as IPs 
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Integer Programs 

 Integer programs: a linear program plus the 
additional constraints that some or all of the 
variables must be integer valued. 

 
 We also permit “xj ∈{0,1},”  or equivalently,  

“xj is binary”    
 This is a shortcut for writing the constraints:  
  0 ≤ xj ≤ 1 and xj integer. 
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1         if prize i is selected
Let 

0         otherwise                ix


 


Write Nooz’s problem as an integer program. 

Budget:   14 IHTFP points. 

Prize 

Points 5 7 4 3 4 6 

Utility 16 22 12 8 11 19 

1 2 3 4 5 6 1 3 2 2 
iPad server 

Brass 
Rat 

Au Bon 
Pain 

6.041 
tutoring 

15.053 
dinner 

Trading for Profit   (from last lecture) 



Modeling logical constraints that 
include only two binary variables. 
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Modeling logical constraints with two 
variables can be accomplished in two 
steps: 

Step 1.  Graph the feasible region as 
restricted to the two variables. 

Step 2.  Add linear equalities and or 
inequalities so that the feasible region of 
the IP is the same as that given in Step 1. 
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Logical Constraints 1 

x1 = 1 if iPad 

x5 = 1 if 6.041 

Constraint 1.  If you 
select the iPad, you 
cannot select 6.041 

x1 

x5 

MIP Constraint: 

     x1  +  x5  ≤ 1 
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Logical Constraints 2 

x1 = 1 if iPad 

x2 = 1 if server 

Constraint 2.  If Prize 1 
is selected then Prize 2 
must be selected. 

x1 

x2 

MIP Constraint:         x1  ≤  x2 
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Logical Constraints 3 

x1 = 1 if iPad 

x2 = 1 if server 

Constraint 3.  You must 
select Prize 1 or Prize 2 
or both 

x2 

MIP Constraint: 

     x1  +  x2  ≥  1 



Other logical constraints 
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Modeling logical 
constraints that 
involve non-binary 
variables is much 
harder.  But we will 
try to make it as 
simple as possible. 

 

I volunteer to 
be the judge 
of what’s 
simple. 

And I’ll be 
the judge of 
what’s 
possible. 



BIG M Method for IP Formulations 

 Assume that all variables are integer valued.   

 Assume a bound u* on coefficients and variables;  

  e.g.,     xj    ≤   10,000 for all j.  
            |aij|   ≤   10,000 for all i, j.   

 Choose M really large so that for every constraint i,  

      |ai1x1 + ai2 x2 + … + ain xn| ≤  bi + M 

 

That is, we will be able to satisfy any “≤” constraint by 
adding M to the RHS.  

And we can satisfy any “≥” constraint by subtracting M 
from the RHS. 11 



The logical constraint “x ≤ 2 or x ≥ 6” 

We formulate the logical constraint,  
“x ≤ 2 or x ≥ 6” as follows. 
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Choose a binary variable w so that 
        if w = 1, then x ≤ 2. 
        if w = 0, then x ≥ 6. 

x ≤ 2 + M(1-w)  

x ≥  6 – M w 

w ∈   {0,1} 

To validate the formulation one needs 
to show:  The logical constraints are 
equivalent to the IP constraints. 

If w = 1, then    x ≤ 2.  

If w = 0, then x ≥ 6.  

Suppose that (x, w) is 
feasible, for the IP. 
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Suppose that x satisfies the logical constraints. 

If x ≤ 2, then let w = 1. x ≤ 2    and 
x ≥  6 – M  

 If x ≥ 6,  
 then let w = 0. 

x ≤ 2 + M                       and 
x ≥  6  

In both cases, the IP constraints are satisfied. 

x ≤ 2 + M(1-w)  

x ≥  6 – M w 

w ∈   {0,1} 

x ≤ 2 or x ≥ 6 

logical constraint IP constraints 



 Modeling     “or constraints” 

If w = 1, then    x1 + 2x2  ≥ 12  

If w = 0, then 4x2 – 10x3 ≤   1  

Therefore,   the logical constraints are satisfied. 

Suppose that (x, w) is 
feasible, for the IP. 

To show:  The logical constraints are 
equivalent to the IP constraints. 

Suppose that xi is 
bounded for all i. 

x1 + 2x2 ≥ 12     or      
4x2 – 10x3 ≤  1.  

Logical constraints. 

x1 + 2x2 ≥ 12 – M(1-w) 
4x2 – 10x3 ≤   1 + Mw.  
IP constraints. 

Suppose that M is very large. 



  

Suppose that x satisfies the logical constraints. 

To show:  The logical constraints are 
equivalent to the IP constraints. 

Suppose that xi is 
bounded for all i. 

x1 + 2x2 ≥ 12     or      
4x2 – 10x3 ≤  1.  

Logical constraints. 

x1 + 2x2 ≥ 12 – M(1-w) 
4x2 – 10x3 ≤   1 + Mw.  

IP constraints. 

Suppose that M is 
very large. 

If x1 + 2x2 ≥ 12, 
 then let w = 1 

x1 + 2x2        ≥ 12              AND 
4x2 – 10x3 ≤   1 + M. 

Else 4x2 – 10x3 ≤  1 
 then let w = 0 

x1 + 2x2        ≥ 12 – M       AND 
4x2 – 10x3 ≤   1. 

In both cases, the IP constraints are satisfied. 



Mental Break 

16 



Fixed charge problems 

 Suppose that there is a linear cost of production, 
after the process is set up. 
 

 There is a cost of setting up the production 
process. 
 

 The process is not set up unless there is 
production. 
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The Alchemist's Problem 
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Gold Silver Bronze Available 
TA labor (days) 2 4 5 100 

lead (kilos) 1 1 1 30 

pixie dust (grams) 10 5 2 204 

Profit  ($) 52 30 20 

Cost to set up $500 $400 $300 

Zor is unable to get any of his reactions going without an 
expensive set up. 

In 1502, the alchemist Zor Primal has set up shop creating gold, 
silver, and bronze medallions to celebrate the 10th anniversary of the 
discovery of America.  His trainee alchemist (TA) makes the 
medallions out of lead and pixie dust.  Here is the data table.  
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Zor’s problem with set up costs 
Maximize     f1(x1)  +  f2(x2)   +  f3(x3)  
subject to     2  x1  +  4  x2  +    5 x3    ≤ 100 
                1  x1  +  1  x2   +   1 x3    ≤ 30  
                     10  x1   + 5  x2   +   2 x3   ≤ 204  
                          x1, x2 , x3 ≥ 0   integer 
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The IP Formulation 

Max     -500 w1 + 52 x1   -    500 w2 + 30 x2   -   300 w3 + 20 x3 

s.t.            2  x1  +  4  x2  +    5 x3    ≤ 100 

                 1  x1  +  1  x2   +   1 x3    ≤ 30  
                         10  x1   + 5  x2   +   2 x3   ≤ 204  

                      x1 ≤ M w1;    x2 ≤ M w2;     x3 ≤ M w3; 

    x1, x2 , x3 ≥ 0   integer 
           w1, w2, w3 ∈ {0,1}. 
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The IP formulation correctly models the fixed charges. 

To show: 
1.  If x is feasible for the fixed charge problem, then (x, w) is 

feasible for the IP (w is defined on the last slide) , and the 
cost in the IP matches the cost of the fixed charge problem. 
 

2.  If (x, w) is feasible for the IP, then x is feasible for the fixed 
charge problem, and the IP cost is the same as the cost in 
the fixed charge problem. 

Suppose that x is feasible for the fixed charge problem. 

If xi ≥  1, then let wi = 1.   Otherwise wi = 0. 
 
Then (x, w) is feasible for the IP, and the 
objective value for the IP is the same as for 
the fixed charge problem. 
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We say that (x, w) is a sensible if the following is true for each i: 
if xi = 0, then wi = 0. 
 
Remark:  if (x, w) is not sensible, then it cannot be optimal. 

x is clearly feasible for the fixed charge problem. 
Consider x1.  

If x1 ≥  1, then w1 = 1 and the cost is -500 + 52x1. 
 
If x1 =  0, then w1 =0 and the cost is 0. 
 
Thus, the cost of x1 is the same for both problems. 
Similarly, the cost of x2 and x3 are the same. 

Suppose that (x, w) is feasible for the IP. 

Claim.   If (x, w) is feasible for the IP and if it is also 
sensible, then x is feasible for the fixed charge 
problem, and the IP cost is the same as the cost in 
the fixed charge problem. 
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O.K.  Shoot. 

It’s not nice to say 
“shoot” to a turkey. 

 

I think that I 
am starting to 
get it.  But I 
have a few 
questions that I 
would like to ask. 
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First of all, I’m 
really unsure 
about what 
coefficient 
values to use.  
It seems very 
confusing. 

All that really matters is that the 
number is sufficiently high so that 
for any feasible x for the fixed 
charge problem, one can obtain a 
feasible w for the IP. 

The constraint:  “xj  ≤   10 wj ” 
isn’t correct because  x1 is 
permitted to be greater than 10 in 
the fixed charge problem. 

On the other hand, the constraint 
“xj  ≤   1000 wj ”  is correct.   

However, larger coefficients can 
make problems harder to solve.  
We say more about this in two 
lectures. 

xj  ≤   30 wj   for j = 1, 2, 3 
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Modeling piecewise linear functions. 

y  =   2 x         if  0 ≤ x  ≤ 3 

y  =   9 – x      if  4 ≤ x  ≤ 7 

y  =  -5 + x      if  8 ≤ x  ≤ 9 

Assume that x is 
integer valued. 

0 3 7 9 

cost 

x 

We will create an IP formulation so that the variable 
y is correctly modeled. 
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Create new binary and integer variables. 

y  =   2 x         if  0 ≤ x  ≤ 3 
y  =   9 – x      if  4 ≤ x  ≤ 7 
y  =  -5 + x      if  8 ≤ x  ≤ 9 

x is integer valued. 0 3 7 9 

cost 

x 

If the variables are defined as above, then  
       y = 2x1 + (9w2 - x2) +  ( - 5 w3 + x3)  
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Add constraints 

 4w2 ≤ x2 ≤ 7 w2 

   w2 ∈ {0, 1}  

 0 ≤ x1 ≤ 3 w1 

   w1 ∈ {0, 1}  

 8w3 ≤ x3 ≤ 9 w3 

   w3 ∈ {0, 1}  

Definitions of the variables. Constraints 

If (x, w) satisfies the definitions, then it also satisfies the constraints. 
 
If (x, w) satisfies the constraints, then it also satisfies the definitions. 

x  = x1 + x2 + x3 

xi integer  ∀  i 

w1 + w2 + w3 = 1 

Suppose that 0 ≤ x ≤ 9, x integer. 
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Not simple! 
 
Do you 
really 
expect 
students to 
learn that? 

It’s not 
really hard.  
It’s just 
clever.  I 
like that in a 
formulation. 

 

It’s another IP formulation 
trick, and it’s a very useful 
one.  

By the way, on the quiz 
and midterm, most of the 
formulation techniques 
will be on a sheet of notes 
that will be given to you. 
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Graph Coloring 

This is a map of the counties in Colorado. What is the fewest 
number of colors need to color all of the counties so that no 
counties with a common border have the same color? 

Public domain image.
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Graph Coloring 

Here is a four coloring of the map. 
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Graph Coloring Problem 

Exercise:  write an integer program whose solution 
gives the minimum number of colors to color a map. 

G = (N, A) 

N = {1, 2, 3, … n}            
       set of counties 

A = set of arcs.    
     (i, j) ∈ A  if counties 
      i and j are adjacent. 

   

y
k

= 1    if color k  is used         

0    if color k  is not used  

ì
í
îï

   

x
ik

= 1    if  region i  is given color k

0    otherwise                             

ì
í
î



The Integer Programming Formulation

  
1    if color k  is used         y 

k 0    if color k  is not used  



   

 1x      if  region i  is given color k
ik 

 0    otherwise                             

Min

s.t

 y
kk

  

x
ik
 x

jk
 1     

       for (i , j ) A  and 

       for k  1 to 4

  

x
ik
 y

k
           

     for i N  and 

     for k  1 to 4

  
x

ikk  1     
               i N

  xik
 {0,1} y

k

Minimize the  number of colors.

Each county is given a color.

If counties i and j share a common 
boundary, then they are not both 
assigned color k.  

If county i is assigned color k, then 
color k is used. 

 {0,1}
32
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An Exam Scheduling Problem (coloring)
The University of Waterloo has to schedule 500 exams in 28 
exam periods so that there are no exam conflicts.  

G = (N, A)

N = {1, 2, 3, … n} set of exams.      28 periods.

A = set of arcs.   
(i, j) ∈ A  if a person needs to take exam i and exam j.

 1    if  exam i  is assigned in period kx
  

ik 
 0   otherwise                                        

x  x  1   for (i , j ) A  and k  [1,28]  ik jk

Equivalently, can the exam conflict graph be colored with 28 colors?



Summary 

 IPs can model almost any combinatorial 
optimization problem. 
 

 Lots of transformation techniques. 
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The 
techniques 
are really 
clever.   Just 
like me. 

Next lecture:  how 
to solve integer 
programs. 
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