
1

15.053/8 April 2, 2013

IP Techniques 1. Branch and Bound

Quotes of the Day

“The time to relax is when you don't have time for it.”
-- Attributed to Jim Goodwin and Sydney J. Harris

“There is more to life than increasing its speed.”
-- Mohandas K. Gandhi

2

3

Overview

 Enumerating all solutions is too slow for most
problems.

 Branch and bound (B & B) starts the same as
enumerating, but it cuts out a lot of the
enumeration whenever possible.

 B & B is the starting point for all solution
techniques for integer programming.

4

Overview of this lecture

 Complete Enumeration

 How to compute a bound

 The branch and bound algorithm

5

Trading for Profit Game

maximize 16x1 + 22x2 + 12x3 + 8x4 +11x5 + 19x6

subject to 5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6 ≤ 14

 xj binary for j = 1 to 6

IP(1)

Budget: 14 IHTFP points.

Prize

Points 5 7 4 3 4 6

Utility 16 22 12 8 11 19

1 2 3 4 5 6 1 3 2 2
iPad server

Brass
Rat

Au Bon
Pain

6.041
tutoring

15.053
dinner

6

Complete Enumeration

 Systematically considers all possible values of
the decision variables.

– If there are n binary variables, there are 2n
different ways.

 Usual idea: iteratively break the problem in two.
At the first iteration, we consider separately the
case that x1 = 0 and x1 = 1.

 Each node of the tree represents the original
problem plus additional constraints.

7

An Enumeration Tree

IP(1) 1

8

An Enumeration Tree

x1 = 0 x1 = 1

IP(1)

2 3

1

IP(2) IP(3)

We refer to nodes 2 and 3 as the children of
node 1 in the enumeration tree. We refer to
node 1 as the parent of nodes 2 and 3.

Branch and bound is family friendly -- so
long as you don’t mind “pruning” children.

iPad
iPad

Which of the following is false?

9

✓

1. IP(1) is the original integer program.

2. IP(3) is obtained from IP(1) by adding the
constraint “x1 = 1”.

3. An optimal solution for IP(1) can be obtained by
taking the best solution from IP(2) and IP(3).

4. It is possible that there is some solution that is
feasible for both IP(2) and IP(3).

10

x1 = 0 x1 = 1

IP(1)

2 3

1

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(2) IP(3)

IP(4) IP(7) IP(5) IP(6)

11

An Enumeration Tree

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

IP(1)

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

Number of leaves of the
tree: 64.

If there are n variables, the
number of leaves is 2n.

12

On complete enumeration

 Suppose that we could evaluate 1 billion
solutions per second.

 Let n = number of binary variables

 Solutions times

– n = 30, 1 second

– n = 40, 17 minutes

– n = 50 11.6 days

– n = 60 31 years

– n = 70 31,000 years

13

On complete enumeration

 Suppose that we could evaluate 1 trillion solutions per
second, and instantaneously eliminate 99.9999999% of
all solutions as not worth considering

 Let n = number of binary variables

 Solutions times

– n = 70, 1 second

– n = 80, 17 minutes

– n = 90 11.6 days

– n = 100 31 years

– n = 110 31,000 years

✓

14

Suppose that the number of binary variables is 150.
Suppose that we could evaluate 1 trillion solutions
of an integer program per second.

Which of the following is false?
1. Complete enumeration would take more than

1000 years.

2. We couldn’t even solve it in 1000 years if we only
had to enumerate 0.000000001 of the solutions.

3. No matter what algorithm we use for this
problem, it cannot be solved in less than 1000
years.

How to solve large integer programs faster

Eliminate much more than

99.99999999999999999999%

of the solutions without

having to evaluate them.

15

16

Subtrees of an Enumeration Tree

1

5 4 6 7

2 3

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

Subtree from
node 2

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

Subtree from
node 6

5 4

2

6

The bottom nodes are leaves of the tree.

If we can eliminate an entire subtree in one step,
we can eliminate a fraction of all

complete solutions at in a single step.

17

1

5 4 7

2 3

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 1 x3 = 0 x3 = 1

5 4

2

6

A simpler problem to work with

18

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 xi ∈ {0,1} for i = 1 to 4.

IP(1)

This will be much easier
to work with. I hope it’s
OK that we will be using
IP(1) now to mean this
4-variable problem.

The entire enumeration tree (16 leaves)

19

IP(1)

1
x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)
x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

The entire enumeration tree (16 leaves)

20

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

In a branch and bound
tree, the nodes
represent integer
programs.

Each integer program is
obtained from its parent
node by adding an
additional constraint.

For example, IP(4) is
obtained from its parent
node IP(2) by adding the
constraint x2 = 0.

4

What is the optimal objective value for IP(4)?

21

Original IP

✓ A. 24

B. 26

C. 9

D. You didn’t give me enough time to figure it out.

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 xi ∈ {0,1} for i = 1 to 4.

Eliminating subtrees

22

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

We eliminate a subtree if
1. We have solved the IP

for the root of the
subtree or

2. We have proved that
the IP solution at the
root of the subtree
cannot be optimal.

4

After you solved IP(4), you
don’t need to look at its
children.

23

But how would
you ever solve
one of the IP’s?
If we could do
that, wouldn’t we
just solve the
original
problem?

We’ll explain this
soon. It all has to do
with our ability to
solve linear
programs.

The LP Relaxation of the IP

24

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 0 ≤ xi ≤ 1 for i = 1 to 4.

LP(1)

If we drop the
requirements that
variables be
integer, we call it
the LP relaxation of
the IP.

The LP relaxation of the knapsack
problem can be solved using a “greedy
algorithm.”

Think of the objective in terms of
dollars, and consider the constraint as a
bound on the weight.

Solving this LP relaxation
Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 0 ≤ xi ≤ 1 for i = 1 to 4.

LP(1)

Now consider the value per
pound of the four items. Put
items into the knapsack in
decreasing order of value per
pound. What do you get?

item 1 2 3 4

value/lb. $3 $2 $4 $1

Opt solution:

 x3 = 1
 x1 = 1/2
 x2 = 0
 x4 = 0
 z = 32 25

The LP relaxation of an IP

26

We get bounds
for each integer
program by
solving the LP
relaxations.

I love LPs.

IP(1)

LP(j) = the integer programming
 relaxation of IP(j).

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 xi ∈ {0,1} for i = 1 to 4.

LP(1)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 0 ≤ xi ≤ 1 for i = 1 to 4.

This LP relaxation solves the IP.

27

Usually, when we
solve the LP, we
get fractional
solutions. But
occasionally, we
get a solution that
satisfies all of the
integer constraints.

LP(4)

If the optimal solution for LP(k) is feasible for IP(k),
then it is also optimal for IP(k).

In this example, the solution to LP(4) has z = 24 and the
solution is feasible for the IP. There can’t possibly be
an IP solution for IP(4) with value better than 24.

Opt solution for LP(4):
 x1 = 0, x2 = 0, x3 = 1, x4 = 1, z = 24.

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 0, x2 = 0 for i = 1 to 4.

 0 ≤ x3 ≤ 1 0 ≤ x4 ≤ 1

This LP relaxation also solves the IP.

28

And occasionally,
the LP relaxation is
infeasible.

In this case, the IP
is also infeasible.

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 1, x2 = 1, x3 = 1

 0 ≤ x4 ≤ 1

LP(15)

If LP(k) is infeasible, then IP(k) is infeasible.

In this example, the LHS of the constraint is at least 13.
There is no way that the constraint can be satisfied by
fractional values or integer values of x3 and x4.

There is no feasible solution for LP(15):

29

I see that
sometimes
the IP gets
solved,
almost by
accident.

We’ll explain this
after the mental
break.

We eliminate a subtree if
1. We have solved the IP for the root of the subtree or
2. We have proved that the IP solution at the root of the

subtree cannot be optimal.

Five slides ago you
said that we could
eliminate a node if we
can prove that the
optimal solution for
the IP is not optimal
for the original
problem. How is that
possible?

Mental Break

30

//localhost/Users/jamesorlin/Dropbox/15.053:8/Lectures 2013/Lecture 12 IP3/L12 Food.pptx

The Incumbent Solution

31

Occasionally, the
algorithm will find
a feasible integer
solution. We will
keep track of the
feasible integer
solution with the
best objective
value so far. It is
called the
incumbent.

The incumbent is a feasible solution for the IP.
It is the best solution so far in the B&B search.

In the “vanilla” version of Branch and Bound,
there is no initial incumbent. We need to wait
until an LP relaxation gives a feasible integer
solution.

In real versions of Branch and Bound, there
are special subroutines that seek out feasible
integer solutions with a large objective. The
best of these is the initial incumbent.

Does Branch and
Bound come in any
other flavors? I
prefer leafy flavors.

Bounds

32

Recall that we
don’t solve
IP(k) directly.
Instead, we
solve its LP
relaxation.
We can use
this to obtain
bounds.

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 0 ≤ xi ≤ 1 for i = 1 to 4. LP(1)

Opt solution for LP(1):
 x1 = 1/2, x2 = 0, x3 = 1, x4 = 0, z = 32

zIP(j) = optimal value for IP(j).

zLP(j) = optimal value for LP(j).
 zLP(1) = 32

Note: zIP(1) ≤ 32.

On computing bounds

33

zIP(j) = optimal value
 for IP(j).

zLP(j) = optimal value
 for LP(j).

We want to find zIP(1).
But that’s really hard.
What’s much easier is
to determine zLP(j) for
any j. We then rely an
an important
observation.

IMPORTANT
OBSERVATION.

zIP(j) ≤ zLP(j) for all j.

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 0 ≤ xi ≤ 1 for i = 1 to 4. LP(1)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 xi ∈ {0,1} for i = 1 to 4. IP(1)

x(j) = optimal solution
 for LP(j)

34

I’m sorry. But I think I
zoned out for a minute.
Have you answered my
question from before the
break? It was about
eliminating subtrees from
IP(k).

I’m just about to. We can
prune the active node k
IP(k) if

 zLP(k) ≤ zI,

where zI is the objective
value of the incumbent.

A node is active if it
has not been pruned
and if LP(k) has not
been solved yet.

Pruning (fathoming) a node using bounding

35

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 0

 0 ≤ xj ≤ 1 for j = 2, 3, 4 LP(2)

Suppose that the
incumbent is

 x1 = 1, x2 = 1
 x3 = 0, x4 = 0
 zI = 26

Opt solution for LP(2) is:
 x1 = 0, x2 = 1, x3 = 1, x4 = 3/4
 zLP(2) = 25.

Then zIP(2) ≤ zLP(2) = 25 < zI
x1 = 0 x1 = 1

2 3
IP(2) IP(3)

1

2

Under which condition can we not
prune active node j from the B&B Tree
for a maximization problem?

36

IP(j) j

✓
1. LP(j) has no feasible solution.
2. LP(j) has a feasible solution, and zLP(j) > zI
3. LP(j) has a feasible solution, and zLP(j) < zI
4. The solution for LP(j) is feasible for the

original integer program.

The branch and bound algorithm in one slide.

37

while there is some active nodes do
 select an active node 𝑗

 mark j as inactive
 Solve LP(j): denote solution as x(j);

 Case 1 -- if zLP(j) ≤ zI then prune node j;

 Case 2 -- if zLP(j) > zI and

 if x(j) is feasible for IP(j)

 then Incumbent := x(j), and zI := zLP(j);

 then prune node j;

 Case 3 -- If if zLP(j) > zI and

 if x(j) is not feasible for IP(j) then
 mark the children of node 𝑗 as active
endwhile

IP(j) j

zI: incumbent
 obj. value

✓

38

Which of the following is false?
1. ZIP(3) ≥ ZIP(4).

2. Every feasible solution for IP(5) is also a feasible
solution for IP(3).

3. Every feasible solution for IP(3) is feasible for IP(4)
and for IP(5)

4. Every feasible solution for IP(3) is feasible or for IP(4)
or IP(5) but not both.

1

5

x1 = 1

x2 = 0 x2 = 1

4

3

The following question is about
ANY branch and bound tree in
which node 3 was not pruned.

Branch and Bound: Node 1

39

IP(1)

1

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 0 ≤ xj ≤ 1 for j = 1, 2, 3, 4

No incumbent

zI = -∞

Opt solution for LP(1):

x1 = 1/2; x2 = 0,
x3 = 1; x4 = 0

zLP(1) = 32.

Branch and Bound: Node 2

40

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 0

 0 ≤ xj ≤ 1 for j = 2, 3, 4

No incumbent

zI = -∞

Opt solution for LP(2):

x1 = 0; x2 = 1,
x3 = 1; x4 = 3/4

zLP(2) = 25.

2

41

You selected
node 2. Would it
have been OK to
select node 3? It
was also active.

Sure. Any active
node can be
selected.
Sometimes it can
make a difference
in speeding up
the algorithm.
But that’s beyond
the scope of the
lecture.

Have you noticed
that Tom is the
one asking the
questions, but
different people
keep answering
them?

Branch and Bound: Node 3

42

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4 IP(4) IP(5)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 1

 0 ≤ xj ≤ 1 for j = 2, 3, 4

No incumbent

zI = -∞

Opt solution for LP(3):

x1 = 1; x2 = 0,
x3 = 1/4; x4 = 0

zLP(3) = 28.

3

43

I notice that when you
create nodes 4 and 5, you
“branch” on variable x2.
On one branch, we
require x2 = 0. On the
other side, we require
that x2 = 1. Is that always
the way that B&B works?

No. We could branch on any
variable. If we branched on x4,
then node 4 would correspond to
the original IP with the additional
constraints:
 x1 = 0, x4 = 0.

Branching makes a big
difference in B&B. The best B&B
algorithms use heuristics to
choose the branching variable.
A good choice can lead to a
much faster solution.

Branch and Bound: Node 4

44

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 0 , x2 = 0

 0 ≤ xj ≤ 1 for j = 3, 4

No incumbent

zI = -∞

Opt solution for LP(4):

x1 = 0; x2 = 0,
x3 = 1; x4 = 1

zLP(4) = 24.

4

Branch and Bound: Node 5

45

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 0 , x2 = 1

 0 ≤ xj ≤ 1 for j = 3, 4

 x1 = 0, x2 = 0,
 x3 = 1, x4 = 1

zI = 24

Opt solution for LP(5):

x1 = 0; x2 = 1,
x3 = 1; x4 = 3/4

zLP(5) = 25.

4 5 4

Incumbent

Branch and Bound: Node 6

46

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 1 , x2 = 0

 0 ≤ xj ≤ 1 for j = 3, 4
Opt solution for LP(6):

x1 = 1; x2 = 0,
x3 = 1/5; x4 = 0

zLP(6) = 28.

6 4

 x1 = 0, x2 = 0,
 x3 = 1, x4 = 1

zI = 24
Incumbent

x3 = 0 x3 = 1

Branch and Bound: Node 7

47

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 1 , x2 = 1

 0 ≤ xj ≤ 1 for j = 3, 4
Opt solution for LP(7):

x1 = 1; x2 = 1,
x3 = 0; x4 = 0

zLP(7) = 26

7 4

 x1 = 0, x2 = 0,
 x3 = 1, x4 = 1

zI = 24
Incumbent

x3 = 0 x3 = 1 x3 = 0 x3 = 1

Branch and Bound: Node 8

48

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 0 , x2 = 1, x3 = 0

 0 ≤ x4 ≤ 1
Opt solution for LP(8):

x1 = 0; x2 = 1,
x3 = 0; x4 = 1

zLP(8) = 6

4

 x1 = 0, x2 = 0,
 x3 = 1, x4 = 1

zI = 24
Incumbent

x3 = 0 x3 = 1 x3 = 0 x3 = 1

8

7

 x1 = 1, x2 = 1,
 x3 = 0, x4 = 0

zI = 26

49

Why are the
children of node
5 are labeled 8
and 9?
Previously, they
were labeled 10
and 11?

How does he
know about
node 4? He
wasn’t even
here for that
slide.

The labels are just
for convenience.
When node 4 was
fathomed, we didn’t
need to create its
children. So, the
labels 8 and 9 could
be used for the
children of node 5.

Branch and Bound: Node 9

50

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 0 , x2 = 1, x3 = 1

 0 ≤ x4 ≤ 1

4

 x1 = 0, x2 = 0,
 x3 = 1, x4 = 1

zI = 24
Incumbent

x3 = 0 x3 = 1 x3 = 0 x3 = 1

9

7

 x1 = 1, x2 = 1,
 x3 = 0, x4 = 0

zI = 26

8

Opt solution for LP(9):

x1 = 0; x2 = 1,
x3 = 1; x4 = 3/4

zLP(9) = 25

Branch and Bound: Node 10

51

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 1 , x2 = 0, x3 = 0

 0 ≤ x4 ≤ 1

4

 x1 = 0, x2 = 0,
 x3 = 1, x4 = 1

zI = 24
Incumbent

x3 = 0 x3 = 1 x3 = 0 x3 = 1

10

7

 x1 = 1, x2 = 1,
 x3 = 0, x4 = 0

zI = 26

8

Opt solution for LP(10):

x1 = 1; x2 = 0,
x3 = 0; x4 = 1/4

zLP(10) = 25

9

Branch and Bound: Node 11

52

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 1 , x2 = 0, x3 = 1

 0 ≤ x4 ≤ 1

4

 x1 = 0, x2 = 0,
 x3 = 1, x4 = 1

zI = 24
Incumbent

x3 = 0 x3 = 1 x3 = 0 x3 = 1

7

 x1 = 1, x2 = 1,
 x3 = 0, x4 = 0

zI = 26

8

Opt solution for LP(11):

There is no feasible solution

9 11 10 10

The end

of B&B

Branch and Bound: the end

53

IP(1)

1

x1 = 0 x1 = 1

2 3 IP(2) IP(3)

x2 = 0 x2 = 1

5 4

x2 = 0

6 7

x2 = 1

IP(4) IP(7) IP(5) IP(6)

Maximize 24 x1 + 2 x2 + 20 x3 + 4 x4

subject to 8 x1 + 1 x2 + 5 x3 + 4 x4 ≤ 9

 x1 = 1 , x2 = 0, x3 = 1

 0 ≤ x4 ≤ 1

4

 x1 = 0, x2 = 0,
 x3 = 1, x4 = 1

zI = 24
Incumbent

x3 = 0 x3 = 1 x3 = 0 x3 = 1

7

 x1 = 1, x2 = 1,
 x3 = 0, x4 = 0

zI = 26

8

Opt solution for LP(11):

There is no feasible solution

9 10 11 11

54

Lessons Learned
 Branch and Bound can speed up the search

– Only 11 nodes (LPs) out of 31 were evaluated.

 Branch and Bound relies on eliminating subtrees,

either because the IP at the node was solved, or
else because the IP solution cannot possibly be
optimum.

 Complete enumerations not possible (because of
the running time) if there are more than 100
variables. (Even 50 variables would take too long.)

 In practice, there are lots of ways to make Branch
and Bound even faster.

55

OK. I’ll bite (so
to speak). How
can one speed
up Branch and
Bound?

There are several ways. One way is for the
B&B algorithm to have heuristics that
“intelligently” choose the best variable to
branch on.

Another technique is to use “rounding.”
Ella explains this on the next slide.

The best technique is to obtain better
bounds by adding valid inequalities. Ella
explains this two slides from now. This is
what the next lecture is all about.

Rounding down to improve bounds

56

We conclude that zIP ≤ zLP = 5.5.

But zIP must be integer valued.

So, zIP ≤ 5.

If all cost coefficients of a maximization problem are
integer valued, then the optimal objective value (for the
IP) is integer. And zIP(j) ≤ ⎣zLP(j)⎦.

Maximize 4 x1 + 3 x2 + 3 x3 + 3 x4

subject to 2 x1 + 2 x2 + 2 x3 + 2 x4 ≤ 3

 xi ∈ {0,1} for i = 1 to 4.

Opt LP Solution

x1 = 1; x2 = 1/2,
x3 = 0; x4 = 0

zLP = 5.5

Adding constraints to improve bounds

 A constraint is called a valid inequality if it is
satisfied by all integer solutions of an IP (but
possibly not the linear solutions of its LP
relaxation.)

 Adding a valid inequality might improve the
bound.

57

We illustrate valid inequalities on
the next slide. It is the focus of
the next lecture.

58

Max 4 x1 + 3 x2 + 3 x3 + 3 x4

s.t. 2 x1 + 2 x2 + 2 x3 + 2 x4 ≤ 3

 xi ∈ {0,1} for i = 1 to 4.
A

Max 4 x1 + 3 x2 + 3 x3 + 3 x4

s.t. x1 + x2 + x3 + x4 ≤ 1.5

 xi ∈ {0,1} for i = 1 to 4.
B

Max 4 x1 + 3 x2 + 3 x3 + 3 x4

s.t. x1 + x2 + x3 + x4 ≤ 1

 xi ∈ {0,1} for i = 1 to 4.
C

Opt LP Solution

x1 = 1; x2 = 1/2,
x3 = 0; x4 = 0

zLP = 5.5

Opt LP Solution

x1 = 1; x2 = 0,
x3 = 0; x4 = 0

zLP = 4

The solution for LP(C) is optimal for IP(C)!

59

Summary
 Making Branch and Bound work well in practice

requires lots of good ideas.

 There was not time in class to cover all of these

ideas in any detail.

 The best idea for speeding up Branch and Bound is
to add valid inequalities, or improve the
inequalities. We cover this in the next lecture.

MIT OpenCourseWare
http://ocw.mit.edu

15.053 Optimization Methods in Management Science
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

