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15.053/8                April 2, 2013 

IP Techniques 1.   Branch and Bound 

 

 

 
 



Quotes of the Day

“The time to relax is when you don't have time for it.”
-- Attributed to Jim Goodwin and Sydney J. Harris 

“There is more to life than increasing its speed.”
-- Mohandas K. Gandhi 
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Overview 

 Enumerating all solutions is too slow for most 
problems. 

 

 Branch and bound (B & B) starts the same as 
enumerating, but it cuts out a lot of the 
enumeration whenever possible. 

 

 B & B is the starting point for all solution 
techniques for integer programming. 
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Overview of this lecture 

 Complete Enumeration 

 

 How to compute a bound 

 

 The branch and bound algorithm 
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Trading for Profit Game 

maximize   16x1 + 22x2 + 12x3 + 8x4 +11x5 + 19x6 

subject to    5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6  ≤ 14 

                  xj binary for j = 1 to 6 

IP(1) 

Budget:   14 IHTFP points. 

Prize 

Points 5 7 4 3 4 6 

Utility 16 22 12 8 11 19 

1 2 3 4 5 6 1 3 2 2 
iPad server 

Brass 
Rat 

Au Bon 
Pain 

6.041 
tutoring 

15.053 
dinner 
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Complete Enumeration 

 Systematically considers all possible values of 
the decision variables.   

– If there are n binary variables, there are  2n 
different ways. 

 Usual idea:  iteratively break the problem in two.  
At the first iteration, we consider separately the 
case that x1 = 0 and x1 = 1. 

 

 Each node of the tree represents the original 
problem plus additional constraints. 
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An Enumeration Tree 

IP(1) 1 
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An Enumeration Tree 

x1 = 0 x1 = 1 

IP(1) 

2 3 

1 

IP(2) IP(3) 

We refer to nodes 2 and 3 as the children of 
node 1 in the enumeration tree.  We refer to 
node 1 as the parent of nodes 2 and 3. 
 
Branch and bound is family friendly -- so 
long as you don’t mind “pruning” children. 

iPad 
iPad 



Which of the following is false? 
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✓ 

1. IP(1) is the original integer program. 

2. IP(3) is obtained from IP(1) by adding the 
constraint “x1 = 1”. 

3. An optimal solution for IP(1) can be obtained by 
taking the best solution from IP(2) and IP(3). 

4. It is possible that there is some solution that is 
feasible for both IP(2) and IP(3). 



10 

x1 = 0 x1 = 1 

IP(1) 

2 3 

1 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(2) IP(3) 

IP(4) IP(7) IP(5) IP(6) 
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An Enumeration Tree 

x1 = 0 x1 = 1 

x2 = 0 x2 = 1 x2 = 0 x2 = 1 

IP(1) 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 

Number of leaves of the 
tree:  64. 
 
If there are n variables, the 
number of leaves is 2n. 
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On complete enumeration 

 Suppose that we could evaluate 1 billion 
solutions per second. 

 Let n = number of binary variables 

 Solutions times 

– n = 30,        1 second 

– n = 40,        17 minutes 

– n = 50          11.6 days 

– n = 60          31 years 

– n = 70  31,000 years 
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On complete enumeration 

 Suppose that we could evaluate 1 trillion solutions per 
second, and instantaneously eliminate 99.9999999% of 
all solutions as not worth considering 

 Let n = number of binary variables 

 Solutions times 

– n = 70,        1 second 

– n = 80,        17 minutes 

– n = 90        11.6 days 

– n = 100        31 years 

– n = 110  31,000 years 

 



✓ 
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Suppose that the number of binary variables is 150. 
Suppose that we could evaluate 1 trillion solutions 
of an integer program per second. 
 

Which of the following is false? 
1. Complete enumeration would take more than 

1000 years. 

2. We couldn’t even solve it in 1000 years if we only 
had to enumerate 0.000000001 of the solutions. 

3. No matter what algorithm we use for this 
problem, it cannot be solved in less than 1000 
years.  



How to solve large integer programs faster 

Eliminate much more than 

99.99999999999999999999%  

of the solutions without 

having to evaluate them. 
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Subtrees of an Enumeration Tree 

1 

5 4 6 7 

2 3 

x1 = 0 x1 = 1 

x2 = 0 x2 = 1 x2 = 0 x2 = 1 

Subtree from 
node 2 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 

Subtree from 
node 6 

5 4 

2 

6 

The bottom nodes are leaves of the tree. 



If we can eliminate an entire subtree in one step, 
we can eliminate a fraction of all  

complete solutions at in a single step. 
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1 

5 4 7 

2 3 

x1 = 0 x1 = 1 

x2 = 0 x2 = 1 x2 = 0 x2 = 1 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 1 x3 = 0 x3 = 1 

5 4 

2 

6 



A simpler problem to work with  
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Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         xi ∈ {0,1}   for i = 1 to 4. 

IP(1) 

This will be much easier 
to work with.  I hope it’s 
OK that we will be using 
IP(1) now to mean this  
4-variable problem. 



The entire enumeration tree (16 leaves) 
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IP(1) 

1 
x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 
x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 



The entire enumeration tree (16 leaves) 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 

In a branch and bound 
tree, the nodes 
represent integer 
programs. 
 
Each integer program is 
obtained from its parent 
node by adding an 
additional constraint. 

For example, IP(4) is 
obtained from its parent 
node IP(2) by adding the 
constraint x2 = 0.  

4 



What is the optimal objective value for IP(4)? 
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Original IP 

✓ A.   24 

B.   26 

C.    9 

D.  You didn’t give me enough time to figure it out. 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         xi ∈ {0,1}   for i = 1 to 4. 



Eliminating subtrees 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 

We eliminate a subtree if 
1.  We have solved the IP 

for the root of the 
subtree or 

2. We have proved that 
the IP solution at the 
root of the subtree 
cannot be optimal. 
 

4 

After you solved IP(4), you 
don’t need to look at its 
children. 
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But how would 
you ever solve 
one of the IP’s?  
If we could do 
that, wouldn’t we 
just solve the 
original 
problem? 

 

We’ll explain this 
soon.  It all has to do 
with our ability to 
solve linear 
programs. 



The LP Relaxation of the IP 

24 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                  0 ≤  xi  ≤ 1   for i = 1 to 4. 

LP(1) 

If we drop the 
requirements that 
variables be 
integer, we call it 
the LP relaxation of 
the IP. 

The LP relaxation of the knapsack 
problem can be solved using a “greedy 
algorithm.”   
 
Think of the objective in terms of 
dollars, and consider the constraint as a 
bound on the weight. 



Solving this LP relaxation 
Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 +   1 x2 + 5 x3 + 4 x4 ≤ 9 

                  0 ≤  xi  ≤ 1   for i = 1 to 4. 

LP(1) 

Now consider the value per 
pound of the four items.  Put 
items into the knapsack in 
decreasing order of value per 
pound.  What do you get? 

item 1 2 3 4 

value/lb.  $3 $2 $4 $1 

Opt solution: 
 
  x3 =  1 
  x1 = 1/2 
  x2 =   0 
  x4 =   0 
   z  =  32 25 



The LP relaxation of an IP 
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We get bounds 
for each integer 
program by 
solving the LP 
relaxations. 
 
I love LPs. 

IP(1) 

LP(j) = the integer programming  
             relaxation of IP(j).   

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         xi ∈ {0,1}   for i = 1 to 4. 

LP(1) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                      0 ≤  xi  ≤ 1   for i = 1 to 4. 



This  LP relaxation solves the IP. 
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Usually, when we 
solve the LP, we 
get fractional 
solutions.  But 
occasionally, we 
get a solution that 
satisfies all of the 
integer constraints.  

LP(4) 

If the optimal solution for LP(k) is feasible for IP(k), 
then it is also optimal for IP(k). 
 
In this example, the solution to LP(4) has z = 24 and the 
solution is feasible for the IP.    There can’t possibly be 
an IP solution for IP(4) with value better than 24. 

Opt solution for LP(4):    
     x1 = 0, x2 = 0, x3 = 1, x4 = 1,  z = 24. 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                      x1 = 0, x2 = 0   for i = 1 to 4. 

                      0 ≤  x3  ≤ 1      0 ≤  x4  ≤ 1  



This  LP relaxation also solves the IP. 
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And occasionally, 
the LP relaxation is 
infeasible.   
 
In this case, the IP 
is also infeasible. 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 1, x2 = 1, x3 = 1 

                                0 ≤ x4 ≤ 1 

LP(15) 

If LP(k) is infeasible, then IP(k) is infeasible. 
 
In this example, the LHS of the constraint is at least 13.  
There is no way that the constraint can be satisfied by 
fractional values or integer values of x3 and x4. 

There is no feasible solution for LP(15):    
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I see that 
sometimes 
the IP gets 
solved, 
almost by 
accident.   

We’ll explain this 
after the mental 
break. 

We eliminate a subtree if 
1.  We have solved the IP for the root of the subtree or 
2. We have proved that the IP solution at the root of the 

subtree cannot be optimal. 
 

Five slides ago you 
said that we could 
eliminate a node if we 
can prove that the 
optimal solution for 
the IP is not optimal 
for the original 
problem.  How is that 
possible? 

 



Mental Break 
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The Incumbent Solution 
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Occasionally, the 
algorithm will find 
a feasible integer 
solution.  We will 
keep track of the 
feasible integer 
solution with the 
best objective 
value so far.   It is 
called the 
incumbent. 

The incumbent is a feasible solution for the IP.   
It is the best solution so far in the B&B search. 

In the “vanilla” version of Branch and Bound, 
there is no initial incumbent.  We need to wait 
until an LP relaxation gives a feasible integer 
solution. 

In real versions of Branch and Bound, there 
are special subroutines that seek out feasible 
integer solutions with a large objective.  The 
best of these is the initial incumbent. 

Does Branch and 
Bound come in any 
other flavors?  I 
prefer leafy flavors. 



Bounds 
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Recall that we 
don’t solve 
IP(k) directly.  
Instead, we 
solve its LP 
relaxation.   
We can use 
this to obtain 
bounds. 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                        0 ≤  xi ≤ 1   for i = 1 to 4. LP(1) 

Opt solution for LP(1):    
     x1 = 1/2, x2 = 0, x3 = 1, x4 = 0,  z = 32 

zIP(j) = optimal value for IP(j). 

zLP(j) = optimal value for LP(j). 
             zLP(1) = 32 

Note:      zIP(1) ≤ 32.    



On computing bounds 
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zIP(j) = optimal value  
            for IP(j). 

zLP(j) = optimal value  
            for LP(j). 
 

We want to find zIP(1).  
But that’s really hard.  
What’s much easier  is 
to determine zLP(j) for 
any j.  We then rely an 
an important 
observation. 

IMPORTANT 
OBSERVATION. 

 
zIP(j) ≤  zLP(j) for all j. 

 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                        0 ≤  xi ≤ 1   for i = 1 to 4. LP(1) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                       xi ∈ {0,1}   for i = 1 to 4. IP(1) 

x(j)   = optimal solution  
           for LP(j) 
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I’m sorry.  But I think I 
zoned out for a minute.  
Have you answered my 
question from before the 
break?  It was about 
eliminating subtrees from 
IP(k).   

I’m just about to.  We can 
prune the active node k 
IP(k)  if  
 
          zLP(k) ≤ zI,  
 
where zI is the objective 
value of the incumbent. 
 
 

A node is active if it 
has not been pruned 
and if LP(k) has not 
been solved yet. 



Pruning (fathoming) a node using bounding 
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Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 0 

                        0 ≤ xj ≤ 1   for j = 2, 3, 4 LP(2) 

Suppose that the 
incumbent is 
 
  x1 =  1,     x2 = 1 
  x3 =  0,     x4 = 0 
     zI  =  26 

Opt solution for LP(2) is: 
    x1 = 0,   x2 = 1,  x3 = 1,  x4 = 3/4 
   zLP(2) = 25. 

Then  zIP(2) ≤ zLP(2) = 25 < zI 
x1 = 0 x1 = 1 

2 3 
IP(2) IP(3) 

1 

2 



Under which condition can we not 
prune active node j from the B&B Tree 
for a maximization problem? 

36 

IP(j) j 

✓ 
1. LP(j) has no feasible solution. 
2. LP(j) has a feasible solution, and zLP(j) > zI 
3. LP(j) has a feasible solution, and zLP(j) < zI 
4. The solution for LP(j) is feasible for the 

original integer program. 



The branch and bound algorithm in one slide. 
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while there is  some active nodes do 
   select an active node 𝑗  

   mark j as inactive  
   Solve LP(j):  denote solution as x(j); 

    Case 1 --   if zLP(j) ≤ zI then prune node j;  

    Case 2 --   if zLP(j) > zI and 

             if x(j) is feasible for IP(j) 

             then Incumbent := x(j), and zI := zLP(j); 

  then prune node j;  

     Case 3 -- If  if zLP(j) > zI and  

             if x(j) is not feasible for IP(j) then  
 mark the children of node 𝑗 as active  
endwhile  

IP(j) j 

zI:  incumbent  
       obj. value 



✓ 
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Which of the following is false? 
1. ZIP(3) ≥ ZIP(4). 

2. Every feasible solution for IP(5) is also a feasible 
solution for IP(3). 

3. Every feasible solution for IP(3) is feasible for IP(4)  
and for IP(5) 

4. Every feasible solution for IP(3) is feasible or for IP(4)  
or IP(5) but not both. 

1 

5 

x1 = 1 

x2 = 0 x2 = 1 

4 

3 

The following question is about 
ANY branch and bound tree in 
which node 3 was not pruned. 



Branch and Bound:  Node 1 
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IP(1) 

1 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         

                        0 ≤ xj ≤ 1   for j = 1, 2, 3, 4 

No incumbent 

zI = -∞ 

Opt solution for LP(1): 

x1 = 1/2;    x2 = 0,  
x3 =  1;      x4 = 0 

zLP(1) = 32.  

 



Branch and Bound:  Node 2 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 0  

                        0 ≤ xj ≤ 1   for j = 2, 3, 4 

No incumbent 

zI = -∞ 

Opt solution for LP(2): 

x1 =  0;      x2 = 1,  
x3 =  1;      x4 = 3/4 

zLP(2) = 25.  

 
2 
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You selected 
node 2.  Would it 
have been OK to 
select node 3?  It 
was also active. 

 

Sure.  Any active 
node can be 
selected.  
Sometimes it can 
make a difference 
in speeding up 
the algorithm.  
But that’s beyond 
the scope of the 
lecture. 

Have you noticed 
that Tom is the 
one asking the 
questions, but 
different people 
keep answering 
them? 



Branch and Bound:  Node 3 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 IP(4) IP(5) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 1  

                        0 ≤ xj ≤ 1   for j = 2, 3, 4 

No incumbent 

zI = -∞ 

Opt solution for LP(3): 

x1 = 1;         x2 = 0,  
x3 =  1/4;      x4 = 0 

zLP(3) = 28.  

 
3 
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I notice that when you 
create nodes 4 and 5, you 
“branch” on variable x2.   
On one branch, we 
require x2 = 0.  On the 
other side, we require 
that x2 = 1.  Is that always 
the way that B&B works? 

No.   We could branch on any 
variable.  If we branched on x4, 
then node 4 would correspond to 
the original IP with the additional 
constraints:  
       x1 = 0, x4 = 0. 
 
Branching makes a big 
difference in B&B.  The best B&B 
algorithms use heuristics to 
choose the branching variable.  
A good choice can lead to a 
much faster solution. 



Branch and Bound:  Node 4 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                        x1 = 0 , x2 = 0  

                        0 ≤ xj ≤ 1   for j = 3, 4 

No incumbent 

zI = -∞ 

Opt solution for LP(4): 

x1 = 0;       x2 = 0,  
x3 =  1;      x4 = 1 

zLP(4) = 24.  

 

4 



Branch and Bound:  Node 5 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                        x1 = 0 , x2 = 1  

                        0 ≤ xj ≤ 1   for j = 3, 4 

  x1 = 0,   x2 = 0,  
  x3 = 1,   x4 = 1 

zI = 24 

Opt solution for LP(5): 

x1 = 0;       x2 = 1,  
x3 =  1;      x4 = 3/4 

zLP(5) = 25.  

 

4 5 4 

Incumbent 



Branch and Bound:  Node 6 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 1 , x2 = 0  

                        0 ≤ xj ≤ 1   for j = 3, 4 
Opt solution for LP(6): 

x1 =  1;        x2 = 0,  
x3 =  1/5;      x4 = 0 

zLP(6) = 28.  

 

6 4 

  x1 = 0,   x2 = 0,  
  x3 = 1,   x4 = 1 

zI = 24 
Incumbent 

x3 = 0 x3 = 1 



Branch and Bound:  Node 7 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 1 , x2 = 1  

                        0 ≤ xj ≤ 1   for j = 3, 4 
Opt solution for LP(7): 

x1 =  1;        x2 = 1,  
x3 =  0;        x4 = 0 

zLP(7) = 26 

 

7 4 

  x1 = 0,   x2 = 0,  
  x3 = 1,   x4 = 1 

zI = 24 
Incumbent 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 



Branch and Bound:  Node 8 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 0 , x2 = 1, x3 = 0 

                        0 ≤ x4 ≤ 1 
Opt solution for LP(8): 

x1 =  0;        x2 = 1,  
x3 =  0;        x4 = 1 

zLP(8) = 6 

 

4 

  x1 = 0,   x2 = 0,  
  x3 = 1,   x4 = 1 

zI = 24 
Incumbent 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 

8 

7 

  x1 = 1,   x2 = 1,  
  x3 = 0,   x4 = 0 

zI = 26 
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Why are the 
children of node 
5 are labeled 8 
and 9?  
Previously, they 
were labeled 10 
and 11? 

 

How does he 
know about 
node 4? He 
wasn’t even 
here for that 
slide. 

The labels are just 
for convenience.   
When node 4 was 
fathomed, we didn’t 
need to create its 
children.  So, the 
labels 8 and 9 could 
be used for the 
children of node 5.  



Branch and Bound:  Node 9 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 0 , x2 = 1, x3 = 1 

                        0 ≤ x4 ≤ 1 

4 

  x1 = 0,   x2 = 0,  
  x3 = 1,   x4 = 1 

zI = 24 
Incumbent 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 

9 

7 

  x1 = 1,   x2 = 1,  
  x3 = 0,   x4 = 0 

zI = 26 

8 

Opt solution for LP(9): 

x1 =  0;        x2 = 1,  
x3 =  1;        x4 = 3/4 

zLP(9) = 25 

 



Branch and Bound:  Node 10 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 1 , x2 = 0, x3 = 0 

                        0 ≤ x4 ≤ 1 

4 

  x1 = 0,   x2 = 0,  
  x3 = 1,   x4 = 1 

zI = 24 
Incumbent 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 

10 

7 

  x1 = 1,   x2 = 1,  
  x3 = 0,   x4 = 0 

zI = 26 

8 

Opt solution for LP(10): 

x1 =  1;        x2 = 0,  
x3 =  0;        x4 = 1/4 

zLP(10) = 25 

 

9 



Branch and Bound:  Node 11 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 1 , x2 = 0, x3 = 1 

                        0 ≤ x4 ≤ 1 

4 

  x1 = 0,   x2 = 0,  
  x3 = 1,   x4 = 1 

zI = 24 
Incumbent 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 

7 

  x1 = 1,   x2 = 1,  
  x3 = 0,   x4 = 0 

zI = 26 

8 

Opt solution for LP(11): 

There is no feasible solution 

 

9 11 10 10 



The end 

of B&B 

Branch and Bound:  the end 
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IP(1) 

1 

x1 = 0 x1 = 1 

2 3 IP(2) IP(3) 

x2 = 0 x2 = 1 

5 4 

x2 = 0 

6 7 

x2 = 1 

IP(4) IP(7) IP(5) IP(6) 

Maximize    24 x1 + 2 x2 + 20 x3 + 4 x4 

subject to     8 x1 + 1 x2 +   5 x3 + 4 x4 ≤ 9 

                         x1 = 1 , x2 = 0, x3 = 1 

                        0 ≤ x4 ≤ 1 

4 

  x1 = 0,   x2 = 0,  
  x3 = 1,   x4 = 1 

zI = 24 
Incumbent 

x3 = 0 x3 = 1 x3 = 0 x3 = 1 

7 

  x1 = 1,   x2 = 1,  
  x3 = 0,   x4 = 0 

zI = 26 

8 

Opt solution for LP(11): 

There is no feasible solution 

 

9 10 11 11 
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Lessons Learned 
 Branch and Bound can speed up the search 

– Only 11 nodes (LPs) out of 31 were evaluated. 
 
 Branch and Bound relies on eliminating subtrees, 

either because the IP at the node was solved, or 
else because the IP solution cannot possibly be 
optimum. 
 

 Complete enumerations not possible (because of 
the running time) if there are more than 100 
variables.  (Even 50 variables would take too long.) 
 

 In practice, there are lots of ways to make Branch 
and Bound even faster. 
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OK.  I’ll bite  (so 
to speak).  How 
can one speed 
up Branch and 
Bound?   

There are several ways.  One way is for the 
B&B algorithm to have heuristics that 
“intelligently” choose the best variable to 
branch on.  
 
Another technique is to use “rounding.”  
Ella explains this on the next slide. 
 
The best technique is to obtain better 
bounds by adding valid inequalities.  Ella 
explains this two slides from now.  This is 
what the next lecture is all about. 



Rounding down to improve bounds 
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We conclude that  zIP ≤ zLP = 5.5. 
 
But zIP must be integer valued. 
 
So, zIP ≤ 5. 

If all cost coefficients of a maximization problem are 
integer valued, then the optimal objective value (for the 
IP) is integer.   And  zIP(j) ≤ ⎣zLP(j)⎦. 

Maximize     4 x1 +  3 x2 +  3 x3 + 3 x4 

subject to    2 x1  + 2 x2 +  2 x3 + 2 x4 ≤ 3 

                        xi ∈ {0,1}   for i = 1 to 4. 

Opt LP Solution 

x1 =  1;        x2 = 1/2,  
x3 =  0;        x4 =   0 

zLP = 5.5 



Adding constraints to improve bounds 

 A constraint is called a valid inequality if it is 
satisfied by all integer solutions of an IP (but 
possibly not the linear solutions of its LP 
relaxation.) 

 Adding a valid inequality might improve the 
bound. 

57 

We illustrate valid inequalities on 
the next slide.  It is the focus of 
the next lecture. 
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Max     4 x1 +  3 x2 +  3 x3 + 3 x4 

s.t.       2 x1  + 2 x2 +  2 x3 + 2 x4 ≤ 3 

            xi ∈ {0,1}   for i = 1 to 4. 
A 

Max       4 x1 +  3 x2 +  3 x3 + 3 x4 

s.t.         x1  +   x2 +    x3 +  x4  ≤  1.5 

                  xi ∈ {0,1}   for i = 1 to 4. 
B 

Max     4 x1 +  3 x2 +  3 x3 + 3 x4 

s.t.         x1  +  x2 +   x3 +  x4  ≤  1                              

             xi ∈ {0,1}   for i = 1 to 4. 
C 

Opt LP Solution 

x1 =  1;        x2 = 1/2,  
x3 =  0;        x4 =   0 

zLP = 5.5 

Opt LP Solution 

x1 =  1;        x2 =   0,  
x3 =  0;        x4 =   0 

zLP = 4 

The solution for LP(C) is optimal for IP(C)! 
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Summary 
 Making Branch and Bound work well in practice 

requires lots of good ideas. 
 
 There was not time in class to cover all of these 

ideas in any detail. 
 

 The best idea for speeding up Branch and Bound is 
to add valid inequalities, or improve the 
inequalities.  We cover this in the next lecture. 
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