15.053/8 April 25, 2013

The Traveling Salesman Problem and Heuristics

Quotes of the day

"Problem solving is hunting. It is savage pleasure and we are born to it."

-- Thomas Harris

"An algorithm must be seen to be believed."

-- Donald Knuth

Heuristics

A heuristic is a technique designed for solving a problem more quickly when classic methods are too slow (from Wikipedia).

Today's lecture:

- Heuristics illustrated on the traveling salesman problem.
- Design principles for heuristics
- Chances for practice

Traveling Salesperson Problem (TSP)

- Find the shortest distance tour passing through each node of the network exactly once.
- c_{ij} = distance from i to j.

http://www.math.uwaterloo.ca/tsp/

Courtesy of William Cook. Used with permission.

15,112 City Optimal Tour in Germany (rotated)

Exercise: Try to find the best tour.

On solving hard problems

- How did you select your tour?
 - it relied on visualization
 - perhaps you took a holistic view
- How can we develop computer heuristics for solving hard problems?

The TSP is a hard problem

• NP-hard (also NP-complete)

Have you seen NP-hardness or NPcompleteness before?

- 1. Yes.
- 2. No.

The TSP is a hard problem

- There is no known polynomial time algorithm.
 Cannot bound the running time as less than n^k for any fixed integer k (say k = 15).
- If there were a polynomial time algorithm, there would be a polynomial time algorithm for every NP-complete problem.

• Question: what does one do with a hard problem?

100 n¹⁵ vs. n!

Suppose that we could carry out 1 sextillion steps per second (10²¹).

- n = number of cities. (n-1)! tours.
- compare time for 100 n¹⁵ steps vs. n! steps.
 - Remark: 100 n¹⁵ steps is NOT practically efficient.

<u>os</u>	
llisecon	nds
urs	
years	
llion yea	ears
urs years Ilion yea	ear

Two types of Heuristics

- Construction heuristics: builds a solution from scratch (starting with nothing).
 - Often called "greedy heuristics". Each step looks good, but it doesn't look ahead.
- Improvement heuristics (neighborhood search): starts with a solution, and then tries to improve the solution, usually by making small changes in the current solution.

An easy construction heuristic: Nearest unvisited neighbor

Animations from Stephen Mertens

Courtesy of Stephan Mertens. Used with permission.

Can we do better in construction?

- Class exercise: try to develop a heuristic in which we add one city at a time, but the next city can be added anywhere in the tour (not just the beginning or the end.)
 - Below is the beginning part of a tour

TSP Insertion Heuristic by Stephan Mertens

Cheapest Insertion Heuristic This heuristic selects the city whose addition to the tour has least cost.

> new reset

step

run

Nodes:

0 10

015

0 20

• 25

solve

Courtesy of Stephan Mertens. Used with permission.

Which do you believe will give shorter length tours:

- 1. The nearest neighbor heuristic
- 2. An insertion based heuristic

Facility location problems.

Choose K facilities so as to minimize total distance from customers to their closest facility.

example with three facilities

Exercise: try developing a good solution where there are 2 facilities

Exercise: Develop a construction heuristic for the facility location problem

- Data: locations in a city.
- c_{ij} = distance from i to j

Improvement heuristics

- Improvement heuristics start with a feasible solution and look for an improved solution that can be found by making a very small number of changes.
 - This will be made more formal
- Two TSP tours are called <u>2-adjacent</u> if one can be obtained from the other by deleting two edges and adding two edges.

2-opt neighborhood search

 A TSP tour T is called 2-optimal if there is no 2adjacent tour to T with lower cost than T.

 2-opt heuristic. Look for a 2-adjacent tour with lower cost than the current tour. If one is found, then it replaces the current tour. This continues until there is a 2-optimal tour.

An improvement heuristic: 2 exchanges.

Look for an improvement obtained by deleting two edges and adding two edges.

After the two exchange

Deleting arcs (4,7) and (5, 1) flips the subpath from node 7 to node 5.

After the two exchange

Deleting arcs (1,3) and (2, 4) flips the subpath from 3 to 2.

After the final improving 2-exchange

Deleting arcs (7,8) and (10, 9) flips the subpath from 8 to 10.

2-exchange heuristic (also called 2-opt)

3-opt neighborhood

- Two TSP tours are called <u>3-adjacent</u> if one can be obtained from the other by deleting three edges and adding three edges.
- A TSP tour T is called 3-optimal if there is no 3adjacent tour to T with lower cost than T.

 3-opt heuristic. Look for a 3-adjacent tour with lower cost than the current tour. If one is found, then it replaces the current tour. This continues until there is a 3-optimal tour.

On Improvement Heuristics

Improvement heuristics are based on searching a "neighborhood ." Let N(T) be the neighborhood of tour T.

In this case, the N(T) consists of all tours that can be obtained from T deleting two arcs and inserting two arcs.

Improvement heuristic:

start with tour T
if there is a tour T' ∈ N(T) with c(T') < c(T), then
replace T by T' and repeat
otherwise, quit with a *locally optimal solution*.

How good are improvement heuristics?

Implementers had to be very clever to achieve these running times.

Facility location problems.

Class exercise. Suppose we want to solve a facility location problem with 3 facilities. Design a neighborhood search heuristic.

Using Randomization

 An important idea in algorithm development: randomization

- Randomization in neighborhood improvement: a way of using the same approach multiple times and getting different answers. (Then choose the best).
- Simulated Annealing: randomization in order to have an approach that is more likely to converge to a good solution

On the use of randomization

- Remark: 2-exchanges will behave differently depending on the starting solution.
- Randomization based heuristic:
- Start with a random tour
- use the 2-exchange neighborhood until obtaining a local optimum.

One difficulty: random tours are terrible.

2-opt heuristic starting from a random solution.

Tour length is 1.7015

Another use of randomization

- Replace the nearest neighbor tour with the following: at each iteration, visit either the closest neighbor or the second or third closest neighbors. Choose each with 1/3 probability.
- This generates a random tour that is "pretty good" and may be a better starting point than a totally random tour.

Other approaches to heuristics

- The metaphor based approach to the design of heuristics
 - simulated annealing
 - genetic algorithms
 - neural networks
 - ant swarming
- That is, look for something that seems to work well in nature, and then try to simplify it so that it is practical and helps solve optimization problems.

Simulated Annealing

A randomization heuristic based on neighborhood search that permits moves that make a solution worse. It is based on an analogy with physical annealing.

Photo removed due to copyright restrictions.

To take a hot material and have it reach a low energy state, one should cool it slowly.

A glass annealing oven. www.carbolite.com

See Eglese, R. W. "Simulated Annealing: A tool for Operational Research." *European Journal of Operational Research* 46 (1990) 271-281. (PDF)

Simulated Annealing: a variation on local search.

A typical acceptance rate as a function of temp

Accept Rate @each Temperature

A network design problem for wireless networks.

© Min Fang. All rights reserved. This content is excluded from our Creative Commonslicense. For more information, see http://ocw.mit.edu/help/fag-fair-use/. Source: Fang, M. Ch. 3 in "Layout Optimization for Point-to-Multi-Point Wireless Optical Networks Via Simulated Annealing & Genetic Algorithm." Senior Project Report, University of Bridgeport, 2000.

A typical graph of Temp vs. cost.

A network design problem for wireless networks.

© Min Fang. All rights reserved. This content is excluded from our Creative Commonslicense. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Fang, M. Ch. 3 in "Layout Optimization for Point-to-Multi-Point Wireless Optical Networks Via Simulated Annealing & Genetic Algorithm." Senior Project Report, University of Bridgeport, 2000.

Summary

- Two types of heuristics
- Use of randomization

Simulated annealing

 Goal of this lecture: let you get started in solving hard problems. 15.053 Optimization Methods in Management Science Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.