15.053

February 14, 2013

- Review of Guassian elimination for solving systems of equations
- Introduction to the Simplex Algorithm

Quotes for today

"Any impatient student of mathematics or science or engineering who is irked by having algebraic symbolism thrust upon him should try to get along without it for a week."
-- Eric Temple Bell
"To become aware of the possibility of the search is to be onto something."
-- Walker Percy

Overview

- Review of how to solve systems of equations
- Solving equations using Gaussian elimination.
- The simplex algorithm
- a clever search technique
- one of the most important developments in optimization in the last 100 years

Solving for three variables

E_{1}	$\mathbf{2} \mathbf{x}_{1}+2 \mathbf{x}_{2}+\mathbf{x}_{3}=$	$\mathbf{9}$
E_{2}	$\mathbf{2} \mathbf{x}_{1}-\mathbf{x}_{2}+2 \mathbf{x}_{3}=$	$\mathbf{6}$
E_{3}	$\mathbf{x}_{1}-\mathbf{x}_{2}+2 \mathbf{x}_{3}=$	$\mathbf{5}$

Step 1. Make the coefficients for x_{1} in the three equations 1,0 and 0 .

$\mathrm{E}_{4}=.5 \mathrm{E}_{1}$	x_{1}	+	x_{2}	+	$.5 \mathrm{x}_{3}$	$=$	$9 / 2$
$\mathrm{E}_{5}=\mathrm{E}_{2}-\mathrm{E}_{1}$		-	$3 \mathrm{x}_{2}$	+	x_{3}	$=$	-3
$\mathrm{E}_{6}=\mathrm{E}_{3}-.5 \mathrm{E}_{1}$		-	$2 \mathrm{x}_{2}$	+	$1.5 \mathrm{x}_{3}$	$=$	$1 / 2$

Steps 2 and 3.

E_{4}	x_{1}	+	x_{2}	+	$.5 \mathrm{x}_{3}$	$=$	$9 / 2$
E_{5}		-	$3 \mathrm{x}_{2}$	+	x_{3}	$=$	-3
E_{6}		-	$2 \mathrm{x}_{2}$	+	$1.5 \mathrm{x}_{3}$	$=$	$1 / 2$

$$
\begin{array}{rlllrl}
\mathrm{E}_{7}=\mathrm{E}_{4}-\mathrm{E}_{8} & \mathrm{x}_{1} & & +5 \mathrm{x}_{3} / 6 & = & 7 / 2 \\
\mathrm{E}_{8}=-\mathrm{E}_{5} / 3 & & \mathrm{x}_{2} & -\mathrm{x}_{3} / 3 & = & 1 \\
\mathrm{E}_{9}=\mathrm{E}_{6}+2 \mathrm{E}_{8} & & & +5 \mathrm{x}_{3} / 6 & = & 5 / 2
\end{array}
$$

$E_{10}=E_{7}-5 E_{12} / 6$	\mathbf{x}_{1}					$=$	$\mathbf{1}$
$E_{11}=E_{8}+E_{12} / 3$			\mathbf{x}_{2}			$=$	$\mathbf{2}$
$E_{12}=6 E_{9} / 5$					\mathbf{x}_{3}	$=$	3

Variation: write variables at the top, and keep track of changes in coefficients.

E_{1}	$2 x_{1}+2 x_{2}+x_{3}=9$
E_{2}	$2 x_{1}-x_{2}+2 x_{3}=6$
E_{3}	$x_{1}-x_{2}+2 x_{3}=5$

	x_{1}	x_{2}	x_{3}		RHS
E_{1}	2	2	1	$=$	9
E_{2}	2	-1	2	$=$	6
E_{3}	1	-1	2	$=$	5

Solve equations as before

Some notation

	x_{1}	x_{2}	x_{3}		RHS
E_{7}	1	0	$5 / 6$	$=$	$7 / 2$
E_{8}	0	1	$-1 / 3$	$=$	1
E_{9}	0	0	$5 / 6$	$=$	$5 / 2$

When the equations are written with variables at the top and coefficients are below, it will be called a tableau.

1		0	
0	and	1	are unit vectors 1_{1} and 1_{2}.
0		0	

Q1. Suppose that we finish solving the three equations.
We have just carried out Steps 1 and 2. After we carry out Step 3, which of the following is not true:

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}		RHS
E_{7}	1	0	$5 / 6$	$=$	$7 / 2$
E_{8}	0	1	$-1 / 3$	$=$	1
E_{9}	0	0	$5 / 6$	$=$	$5 / 2$

1. The column for x_{3} becomes 1_{3}.
2. The columns for x_{2} and x_{3} remain as 1_{1} and 1_{2}.
3. The first equation becomes $x_{1}=7 / 2$.
4. The third equation gives the solution for x_{3}.

Pivoting

	x_{1}	x_{2}	x_{3}	x_{4}		RHS
Row 1	2	2	1	1	$=$	9
Row 2	2	-1	2	0	$=$	6
Row 3	1	-1	2	1	$=$	5

To pivot on the coefficient in row i and column j is to convert column j into $\mathbf{1}_{\mathrm{i}}$ by

1. multiply row i by a constant
2. add multiples of row ito other rows.

	x_{1}	x_{2}	x_{3}	x_{4}		RHS
Row 1	0	3	-1	1	=	3
Row 2	1	-1/2	1	0	=	3
Row 3	0	-1/2	1	1	=	2

Q2. Suppose that we pivot on the "-1" in Row 1. What is coefficient of x_{4} in Row 3 after the pivot?

\mathbf{x}_{1}		x_{2}	x_{3}	X_{4}		RHS
Row 1	0	3	-1	1	=	3
Row 2	1	-1/2	1	0	=	3
Row 3	0	-1/2	1	1	=	2

A. 0
B. 1
C. 2
D. There is not enough information

Summary of solving equations

To solve for x_{1}, x_{2}, and x_{3} we

- pivot on row 1, col 1
- pivot on row 2, col 2
- pivot on row 3, col 3
(assuming the coefficients are non-zero)

This concludes are summary of solving equations.

Linear Programming

- Getting LPs into the correct form for the simplex method
- changing inequalities (other than non-negativity constraints) to equalities
- putting the objective function
- canonical form
- The simplex method, starting from canonical form.

A linear program with inequality constraints.

Consider a linear program in which all variables are non-negative. How can we convert inequality
constraints into equality constraints?
$\max z=3 x_{1}+2 x_{2}-x_{3}+2 x_{4}$

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}-x_{4} \leq 5 ; \\
2 x_{1}+4 x_{2}+x_{3}+3 x_{4} \geq 8 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

We convert a " \leq " constraint into a "=" constraint by adding a slack variable, constrained to be ≥ 0.

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}-x_{4}+s_{1}=5 \\
s_{1} \geq 0
\end{gathered}
$$

Converting a " \geq " constraint.

$$
2 x_{1}+4 x_{2}+x_{3}+3 x_{4} \geq 8 ;
$$

We convert a " \geq " constraint into a "=" constraint by subtracting a surplus variable, constrained to be ≥ 0.

$$
\begin{gathered}
2 x_{1}+4 x_{2}+x_{3}+3 x_{4}-s_{2}=8 ; \\
s_{2} \geq 0
\end{gathered}
$$

Whenever we transform a new constraint, we create a new variable. There is only one equality constraint for each slack variable and for each surplus variable.

Creating an LP tableau from an LP

Assumptions:

- All variables are nonnegative
- All other constraints are "=" constraints.
$\max z=3 x_{1}+2 x_{2}-x_{3}+2 x_{4}$

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}-x_{4}+s_{1}=5 ; \\
& 2 x_{1}+4 x_{2}+x_{3}+3 x_{4}-s_{2}=8 ; \\
& x_{1}, x_{2}, x_{3}, x_{4}, s_{1}, s_{2} \geq 0
\end{aligned}
$$

Question: what variables should we include?
what about the objective function?

An LP tableau

$\max z=3 x_{1}+2 x_{2}-x_{3}+2 x_{4}$

$$
x_{1}+2 x_{2}+x_{3}-x_{4}+s_{1}=5
$$

$$
2 x_{1}+4 x_{2}+x_{3}+3 x_{4} \quad-s_{2}=8
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}, s_{1}, s_{2} \geq 0
$$

$$
-z+3 x_{1}+2 x_{2}-x_{3}+2 x_{4}=0
$$

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$		RHS
1	3	2	-1	2	0	0	$=$	0
0	1	2	1	-1	1	0	$=$	5
0	2	4	1	3	0	-1	$=$	8

The simplex method begins with an LP in canonical form

-z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}		RHS
1	3	2	-1	2	0	0	=	0
0	1	2	1	-1	1	0	=	5
0	2	4	1	3	0	-1	=	8

An LP tableau is in canonical form if all of the following are true.

1. All decision variables are non-negative (except for-
2. All (other) constraints are equality constraints.
3. The RHS is non-negative (except for cost row)
4. For each row i, there is a column equal to 1_{i}.

An LP in canonical form

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		RHS
1	3	-2	-1	0	1	0	$=$	0
0	1	-2	1	1	-1	0	$=$	5
0	2	-4	-1	0	2	1	$=$	1

Our checklist from the previous slide

1. All decision variables are non-negative (except for-
2. All (other) constraints are equality constraints.
3. The RHS is non-negative (except for cost row)
4. For each row i, there is a column equal to 1_{i}.

On the row with the objective function

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		RHS
1	3	-2	-1	0	1	0	$=$	0

We will refer to the row with the objective function as the "z-row" It's a term that is used only in 15.053 and 15.058.

Professor Orlin accidentally referred to this row as the "z-row" a decade ago, and found it amusing at that time because it sounds the same as 0 .

He still uses the term.

Q3. Consider the tableau below, where a, b, c, and c are unknown. Under what conditions is the tableau in canonical form? Select the best answer.

$\mathbf{- z}$	$\mathbf{x}_{\mathbf{1}}$	\mathbf{x}_{2}	\mathbf{x}_{3}	$\mathbf{x}_{\mathbf{4}}$	\mathbf{x}_{5}	$\mathbf{x}_{\mathbf{6}}$		RHS
$\mathbf{1}$	3	-4	-1	$\mathbf{0}$	1	$\mathbf{0}$	$\mathbf{=}$	\mathbf{a}
$\mathbf{0}$	1	-2	1	$\mathbf{1}$	-1	$\mathbf{0}$	$\mathbf{=}$	$\mathbf{5}$
$\mathbf{0}$	2	-4	-1	\mathbf{b}	2	$\mathbf{1}$	$\mathbf{=}$	\mathbf{C}

1. $a \geq 0$
$b=0$,
2. $\begin{aligned} a & \leq 0 \\ b & =0,\end{aligned}$
3. $b=0$,
4. $b=0$,
$c \geq 0$.
$c>0$
$c \geq 0$.
$c>0$.
5. All decision variables are non-negative (except for-z)
6. All (other) constraints are equality constraints.
7. The RHS is non-negative (except for cost row)
8. For each row i, there is a column equal to 1_{i}.

The simplex method will start with a tableau in canonical form. Is it easy to put a linear program into canonical form?

It's pretty easy to satisfy conditions 1 to 3. It's called putting an LP into standard form. Condition 4 is tricky. We'll explain how to do it next lecture. For now, I ask you and the students to accept that we start in canonical form.

OK. For now.

Mental Break

$$
\begin{aligned}
& T F \\
& T T
\end{aligned}
$$

Basic variables, non-basic variables, and basic feasible solutions.

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		RHS
1	3	-2	-1	0	1	0	$=$	0
0	1	-2	1	1	-1	0	$=$	5
0	2	-4	-1	0	2	1	$=$	1

The basic variables are the variables corresponding to the identity matrix. $\left\{-z, x_{4}, x_{6}\right\}$.

The nonbasic variables are the remaining variables. $\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$

The basic feasible solution is the unique solution obtained by setting the non-basic variables to 0 .

$$
z=0, \quad x_{1}=0, \quad x_{2}=0, \quad x_{3}=0, \quad x_{4}=5, \quad x_{5}=0, \quad x_{6}=1
$$

Same problem, different basic variables.

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		RHS
1	3	-2	-1	0	1	0	$=$	0
0	1	-2	1	1	-1	0	$=$	5
0	2	-4	-1	0	2	1	$=$	1

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		RHS
1	4	-4	0	1	0	0	$=$	5
0	1	-2	1	1	-1	0	$=$	5
0	3	-6	0	1	1	1	$=$	6

What are the basic variables?
What are the nonbasic variables?
What is the basic feasible solution?
$z=-5, \quad x_{1}=0, \quad x_{2}=0, \quad x_{3}=5, \quad x_{4}=0, \quad x_{5}=0, \quad x_{6}=6$.

A basic feasible solution is a corner point solution.

A warm exercise about optimality conditions.

Q4. What is the optimal objective value for the following linear program.
maximize $z=-3 x_{1}-4 x_{2}-0 x_{3}+13$
subject to $\quad x_{1}, x_{2}, x_{3} \geq 0$
A. 0
B. 13
C. 20
D. There is not enough information

Optimality conditions for a maximization problem

Optimality Condition. A basic feasible solution is optimal if every coefficient in the z-row is non-positive.

Basic Var	$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		RHS
$-z$	1	0	-13	0	0	-1	$=$	-17
x_{3}	0	0	2	1	0	2	$=$	4
x_{4}	0	0	-1	0	1	-2	$=$	1
x_{1}	0	1	6	0	0	1	$=$	3

BFS

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
17	3	0	4	1	0

Objective: $\quad z=0 x_{1}-13 x_{2}+0 x_{3}+0 x_{4}-x_{5}+17$.
There can be no solution with $\mathrm{x} \geq 0$ that has value >17

Some LP notation

$\mathbf{- z}$	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$		$\mathbf{x}_{\mathbf{6}}$		RHS
$\mathbf{1}$	$\mathbf{c}_{\mathbf{1}}$	$\mathbf{c}_{\mathbf{2}}$	\ldots	\mathbf{c}_{n}	$=$	$\mathbf{- z}_{\mathbf{0}}$
$\mathbf{0}$	a_{11}	a_{12}	\ldots	$\mathrm{a}_{1 \mathrm{n}}$	$=$	b_{1}
\ldots	\ldots	\ldots	$\ldots \ldots$			
0	$\mathrm{a}_{\mathrm{m} 1}$	$\mathrm{a}_{\mathrm{m} 2}$	\ldots	a_{mn}	$=$	b_{m}

c_{i} is the cost coefficient for variable x_{i}.

The initial tableau for an LP

$\mathbf{- z}$	\mathbf{x}_{1}	\mathbf{x}_{2}		\mathbf{x}_{6}		$\mathbf{R H S}$
$\mathbf{1}$	$\overline{\mathbf{c}}_{1}$	$\overline{\mathbf{c}}_{2}$	\ldots	$\overline{\mathbf{c}}_{\mathrm{n}}$	$\mathbf{=}$	$\overline{\mathbf{z}}_{0}$
0	$\overline{\mathrm{a}}_{11}$	$\overline{\mathrm{a}}_{12}$	\ldots	$\overline{\mathrm{a}}_{1 n}$	$=$	$\overline{\mathrm{b}}_{1}$
\ldots	\ldots	\ldots	$\ldots \ldots$			
0	$\overline{\mathrm{a}}_{\mathrm{m} 1}$	$\overline{\mathrm{a}}_{\mathrm{m} 2}$	\ldots	$\overline{\mathrm{a}}_{\mathrm{mn}}$	$=$	$\overline{\mathrm{b}}_{\mathrm{m}}$

$\overline{\mathbf{c}}_{\mathrm{i}}$ is the reduced cost for variable x_{i}.

The tableau for the same LP after pivoting

Optimality conditions for a maximization problem

Optimality Condition. A basic feasible solution is optimal if the reduced cost of every variable (except z) is non-positive.

Basic Var	$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		RHS
$-z$	1	0	-13	0	0	-1	$=$	-17
x_{3}	0	0	2	1	0	2	$=$	4
x_{4}	0	0	-1	0	1	-2	$=$	1
x_{1}	0	1	6	0	0	1	$=$	3

How to obtain a better solution if the bfs is not optimal.

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		RHS
1	4	-4	0	-1	0	0	$=$	-3
0	1	-2	1	1	-1	0	$=$	5
0	3	-6	0	1	1	1	$=$	6

$z=4 x_{1}-4 x_{2}-x_{4}+3$
Choose i so that $\bar{c}_{i}>0$. (choose $\left.i=1\right)$

- Note: \mathbf{x}_{i} is a nonbasic variable

Increase x_{1}.
Avoid increasing $\mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{5}$. (Do not change the value of any of the other nonbasic variables).

Finding a solution with higher profit.

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		RUS
1	4	-4	0	-1	0	0	$=$	-3
0	1	-2	1	1	-1	0	$=$	5
0	3	-6	0	1	1	1	$=$	6

$$
z=4 x_{1}-4 x_{2}-x_{4}+3
$$

Increase \mathbf{x}_{1}. (x_{1} is called the entering variable.) Keep other non-basic variables at 0 (x_{2} and x_{4} and x_{5}). Adjust the basic variables x_{3} and x_{6} to maintain feasibility.

$$
\begin{aligned}
-z+4 x_{1} & =-3 \\
x_{1}+x_{3} & =5 \\
3 x_{1}+x_{6} & =6
\end{aligned}
$$

$$
\begin{aligned}
& z=3+4 x_{1} \\
& x_{3}=5-x_{1} \\
& x_{6}=6-3 x_{1}
\end{aligned}
$$

Moving along an edge: The Δ-Method

$$
\begin{aligned}
& z=3+4 x_{1} \\
& x_{3}=5-x_{1} \\
& x_{6}=6-3 x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\Delta \\
& z=3+4 \Delta \\
& x_{3}=5-\Delta \\
& x_{6}=6-3 \Delta \\
& x_{2}=x_{4}=x_{5}=0
\end{aligned}
$$

> To express the edge, write all variables in terms of a single parameter Δ.

The edge consists of all vectors x, z that can be formed on the left for $0 \leq \Delta \leq 2$.

Why are the bounds 0 and 2?

Next steps

- How to recognize unboundedness
- A shortcut that permits one to pivot to the next basic feasible solution (corner point solution)
- But first, a quick review

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		RHS
1	0	-2	0	0	+1	$=$	-6
0	0	2	1	0	2	$=$	4
0	0	-1	0	1	-2	$=$	2
0	1	6	0	0	1	$=$	3

What is the basic feasible solution?

What is the edge that corresponds to increasing the entering variable?

What is the next basic feasible solution? What is the exiting variable?

Unboundedness

Theorem. If the column coefficients (except for the zrow) of the entering variable are non-positive, then the objective value is unbounded from above.

$\mathbf{- z}$	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	x_{4}	x_{5}	$\mathbf{x}_{\mathbf{6}}$		RUS
$\mathbf{1}$	4	$\mathbf{2}$	$\mathbf{0}$	1	0	$\mathbf{0}$	$\mathbf{=}$	$\mathbf{5}$
$\mathbf{0}$	1	$\mathbf{- 1}$	$\mathbf{1}$	1	-1	$\mathbf{0}$	$\mathbf{=}$	$\mathbf{5}$
$\mathbf{0}$	3	$\mathbf{0}$	$\mathbf{0}$	1	1	$\mathbf{1}$	$\mathbf{=}$	$\mathbf{6}$

Suppose that x_{2} enters.
Let $x_{2}=\Delta$.

$$
x_{1}=x_{4}=x_{5}=0 \quad\left[\begin{array}{l}
x_{3}-\Delta \\
x_{6}=6
\end{array}\right.
$$

$$
\begin{aligned}
z & =2 \Delta-5 \\
x_{3} & =\Delta+5 \\
x_{6} & =6
\end{aligned}
$$

As Δ increases, z increases.

There is no upper bound on Δ.

The Min Ratio Rule

$$
\begin{aligned}
x_{1}=3-\Delta ; & x_{4}=2+2 \\
x_{2}= & 0 ; \\
x_{3}= & \Delta-2 \Delta ; \quad x_{5}=\Delta ; \\
& 0 \leq \Delta \leq \mathbf{z}^{z}=6+\Delta ;
\end{aligned}
$$

$\Delta_{\text {max }}=\min \quad$ RHS coef col. coed
s.t. col. coef >0

The exiting variable is the basic variable in the row with the min ratio.

The simplex pivot rule: pivot on the column of the entering variable and the row which gave the min ratio.

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		RHS
1	0	-2	0	0	+1	$=$	-6
0	0	2	1	0	2	$=$	4
0	0	-1	0	1	-2	$=$	2
0	1	6	0	0	1	$=$	3

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		RHS
1	0	-3	-0.5	0	0	$=$	-8
0	0	1	0.5	0	1	$=$	2
0	0	1	1	1	0	$=$	6
0	1	5	-0.5	0	0	$=$	1

The entering variable is x_{2}. What is the leaving variable?

$-z$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		RHS
1	0	+2	0	0	-1	$=$	-2
0	0	2	1	0	2	$=$	4
0	0	-1	0	1	-2	$=$	1
0	1	6	0	0	1	$=$	3

1. x_{1}
2. x_{3}
3. X_{4}
4. -z

Summary for maximization.

1. Find a variable $\mathbf{x}_{\mathbf{s}}$ so that its cost coefficient is positive.
2. Let $\mathrm{X}_{\mathrm{s}}=\Delta$.
3. Adjust the basic variables as a function of Δ. Choose Δ maximal.
4. Arrive at a new corner point or else increase Δ infinitely and prove that the max objective value is unbounded from above.

Next Lecture

- Review the simplex method
- Show how to obtain an initial bfs
- Prove finiteness (under some assumptions)

MIT OpenCourseWare
http://ocw.mit.edu

15.053 Optimization Methods in Management Science

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

