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Transformations in Integer Programming 

Amit 

Hi,  Mita and I are here to 

introduce a tutorial on 

integer programming 

modeling. 

 

Mita 

You can think of it as 

transformations.  Our friends from 

15.053 will explain how to take 

constraints that are easily 

understood and transform them into 

integer programs. 
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This tutorial will include a 

mixture of techniques as well 

as lists of transformations.    

A more comprehensive 

document is also available.  It 

is entitled “IP Reference guide 

for integer programming 

formulations.”  It has the 

following sections. 

IP Reference Guide 

1. Subset selection problems. 

2. Modular arithmetic 

3. Simple logical constraints 

4. Other logical constraints and 
the big M method. 

5. Fixed costs 

6. Piecewise linear functions 
and  

7. The traveling salesman 
problem. 
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But first, an important question. 

Tom 

Wow!  That’s a lot of 

problems.  Do you really 

expect students to learn 

all of it? 

We don’t expect students to 

memorize the techniques.  We’ll 

focus on some problems.  For 

others, we will just refer to the 

guide.  We’ll also make subsets of 

the guide available for quizzes and 

the second midterm. 
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Transforming Logical Conditions  
Max 16x1+ 22x2+ 12x3+ 8x4+ 11x5+ 19x6  
 
 
           5x1+ 7x2+ 4x3+ 3x4+ 4x5+ 6x6 ≤ 14 

                         xj ∈ {0,1} for each j = 1 to 6 

Nooz, the most  
trusted name in fox. 

I’m going to pretend to add 
conditions on what I will 
choose.  We will then model 
these logical constraints 
using integer programming. 

Here is the integer program 
used in the first integer 
programming lecture.  As you 
recall, it’s based on a game 
show that I was on. 
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Max 16x1+ 22x2+ 12x3+ 8x4+ 11x5+ 19x6  
 
 
           5x1+ 7x2+ 4x3+ 3x4+ 4x5+ 6x6 ≤ 14 

                         xj ∈ {0,1} for each j = 1 to 6 

Suppose that I 
refuse to select item 
5 if I have also 
selected item 1. 

In this case, the 

feasible solutions 

for Nooz will permit 

x1 = 1 or x5 = 1, but 

not both. 

This can be 

modeled via the 

linear constraint,  

    x1 + x5 ≤ 1 

 

Ella 
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I don’t get it.  The 
linear constraint 
doesn’t look anything 
like the logical 
constraint. 

. 

Well, Tom.  The important 
thing isn’t whether it “makes 
sense” as a logical constraint.  
The important thing is that an 
optimal solution for the 
integer program will produce 
an optimal solution for the 
original problem. 
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But how will 
we know 
that? 

In this case, we need only focus on 
variables x1 and x5 to see that the 
constraint works.  We don’t need to think 
about the other variables. 

 

You see, Nooz just wants to eliminate the 
possibility that items 1 and 5 are both 
selected.  In other words, we cannot have 
x1 = 1 and x5 = 1.  The linear constraint 
accomplishes the same thing, taking into 
account that x1 and x5 are both binary. 
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Another logical constraint 

Max 16x1+ 22x2+ 12x3+ 8x4+ 11x5+ 19x6  
 
 
           5x1+ 7x2+ 4x3+ 3x4+ 4x5+ 6x6 ≤ 14 

                         xj ∈ {0,1} for each j = 1 to 6 

Suppose in this 
illustration that I will 
take item 3 if and only 
if I take item 4.  How 
do we model that? 

In this case, the feasible 

solutions for Nooz will 

permit x3 = 1 and x4 = 1,  

or else x3 = 0 and x4 = 0,   

We can model it as the 

linear constraint  x3 = x4. 
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Can you 
explain it to 
me.  I liked 
your last 
explanation. 

Well, Tom.  Before Nooz added the requirement, 
there were four possibilities for variables x3 and x4:   

x3 = 0, x4= 0; or x3 = 0, x4= 1; or 

x3 = 1, x4= 0; or x3 = 1, x4= 1.  But after Nooz added 
his new restriction, there were only two possibilities: 

x3 = 0, x4= 0; or x3 = 1, x4= 1; 

 

When we added the linear constraint 

“x3 = x4”  

we left the same two possible solutions for x3 and x4.  

So, our integer linear constraints modeled Nooz’s new 

problem. 
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One more logical constraint 

Max 16x1+ 22x2+ 12x3+ 8x4+ 11x5+ 19x6  
 
 
           5x1+ 7x2+ 4x3+ 3x4+ 4x5+ 6x6 ≤ 14 

                         xj ∈ {0,1} for each j = 1 to 6 

OK.  This will be my last 
practice exercise for 
my game show problem.  
Suppose that I add the 
constraint that I 
choose exactly 3 items. 

In this case, Nooz’s constraint 

sounds like a linear constraint.  

And it can be modeled with the 

constraint.  

 x1 + x2 + x3 + x4 + x5 + x6 = 3. 
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Ella, this is great.  I 
think I now know how to 
model logical 
constraints for integer 
programming. 

Well, Tom.  I’m really glad you 
understand what we’ve done so far.  But 
for the first examples, we only modeled 
constraints involving two binary variables.  
It turns out that other types of logical 
constraints require other types of 
modeling techniques.  Nooz will show you 
another couple of examples. 
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Transforming “Non-Exclusive OR” Constraints 
Either   2x1 +  x2 ≥ 5   or 2x3 – x4 ≤ 2 or both
   

Suppose that we have 
already modeled a problem 
as a linear program, and 
we now want to add the 
logical constraints  
2x1 +  x2 ≥  5   or  
2x3 – x4 ≤ 2 or both 

This situation is more complicated, 

but there is a standard technique for 

doing it.   

We are not assuming here that xi is 

binary.  In fact, we are not even 

assuming that it is required to be 

integer valued.  But for our 

transformation to work, we do need 

to require it to be bounded.  So we 

will assume that  

xi ≤ 100 for each i.  
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The Transformation 

Either   2x1 +  x2 ≥ 5   or 2x3 – x4 ≤ 2 or both
   

 

   

           2x1 +  x2 ≥  5  -  My1 
           2x3 –  x4 ≤ 2  +  M(1- y1) 
    y1 ∈ {0, 1} 
 
where M is a constant that is sufficiently 
large.  In this case, we could choose M to be 
200 or anything larger. 

In order to model this “either-

or” constraint, we add a 

variable y1, which is required 

to be binary, and we add two 

new constraints to our original 

linear program. 
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2x1 +  x2 ≥  5  - My1 
2x3 –  x4 ≤ 2  +  M(1- y1) 
y1 ∈ {0, 1} 

Either   2x1 +  x2 ≥ 5   or 2x3 – x4 ≤ 2 or both 
    

I’m lost 
again. 

Don’t worry.  I’ll explain it to you.  
Just think about the integer 
program.  The feasible region is the 
union of the feasible region with  
y1 = 0 and the feasible region with 
y1 = 1. 

 

If y1 = 0, the feasible region includes 
the constraints: 

2x1 +  x2 ≥  5   and   2x3 –  x4 ≤  2  +  M. 

But because x3 ≤ 100 and we will 

choose M ≥ 200.  The second 

constraint is automatically satisfied.  

This leaves us with  

     y1 = 0, 2x1 +  x2 ≥  5 
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2x1 +  x2 ≥  5  - My1 
2x3 –  x4 ≤ 2  +  M(1- y1) 
        y1 ∈ {0, 1} 

Either   2x1 +  x2 ≥ 5   or 2x3 – x4 ≤ 2 or both 
    

Go on. 

If y1 = 1, the feasible region includes the 
constraints: 

 

2x1 +  x2 ≥  5 - M   and   2x3 –  x4 ≤  2. But 

because variables are nonnegative and  

M ≥ 5, the first constraint is automatically 

satisfied.  This leaves us with 

     y1 = 1, 2x3 –  x4 ≤  2.     

 

Putting the two cases together, we conclude 
that the constraints are equivalent to  

 2x1 +  x2 ≥ 5  or  2x3 – x4 ≤ 2  or  both. 
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Transforming If-Then Constraints 

If   2x1 +  x2 ≤ 5   then  2x3 – x4 ≥ 2.  
  

Suppose that we have a linear program, but we want to add 
the constraint 
 “If 2x1 +  x2 ≤  5   then  2x3 – x4 ≥ 2 “.  How can we do 
this using integer variables plus linear constraints? 

This situation is very similar to the previous one, because 

the “if-then constraint” is equivalent to writing    

2x1 +  x2 > 5   or   2x3 – x4 ≥ 2 or both. 

But there is an added complication.  We don’t like a strict 

inequality constraint.   So, we will show how to carry out the 

transformation in the special case that x1 and x2 are integer 

valued.  In this case  
 2x1 +  x2 > 5  if and only if 2x1 +  x2 ≥ 6 . 
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Transforming the “if-then” constraint. 

If   2x1 +  x2 ≤ 5   then  2x3 – x4 ≥ 2  
    is equivalent in this case to  
2x1 +  x2 ≥ 6 or   2x3 – x4 ≥ 2 or both.
   

This is equivalent to 

2x1 +  x2 ≥ 6 - My1 
2x3 –  x4 ≥ 2  - M(1- y1) 
y1 ∈ {0, 1} 

  

But this time, we leave 

it as an exercise to the 

student to fill in the 

details of why it works.  

As before, we assume 

that all variables are 

bounded by 100. In 

this case, we can let 

M be 200 or higher. 

It’s all intuitively obvious 
to the casual observer. 

By the way, if x1 and x2 

were not integer 

valued, one cannot 

model the “if then 

constraints” correctly 

using integer and  

linear constraints. 
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Non-linear Objectives 

Another great application 

of integer programming is 

non-linear objectives. 

Many times in practice, the costs 

are non-linear.  This can be due 

to “fixed costs” or quantity 

discounts, or increasing marginal 

costs or decreasing marginal 

costs. 

Our friends will present 

a couple of techniques 

for modeling non-linear 

objectives. 
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Zor’s original problem 
Maximize     52 x1  +  30 x2  + 20 x3 
subject to     2  x1  +  4  x2  +    5 x3    ≤ 100 
                1  x1  +  1  x2   +   1 x3    ≤ 30  
                     10  x1   + 5  x2   +   2 x3   ≤ 204  
                          x1, x2 , x3 ≥ 0   integer 

I hope you remember 

Zor’s problem.  But 

even if you don’t, you 

can follow what I’m 

going to say.  We are 

going to consider a 

new (revised) problem 

in which the objective 

is f1(x1) + f2(x2) + f3(x3), 

defined as follows. 
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The new variables represent “fixed costs”.  If x1 = 0 and no gold is 

produced, the cost is 0.  Otherwise, Zor has to pay a fixed cost of 500 

Euros before doing any production and before getting any revenue. 

In order to model fixed costs using integer variables and 

linear constraints, we create new variables.  In this case, 

we create binary variables w1, w2, and w3.   We will then 

create linear constraints (on the next slide) that ensures 

that w1, w2 and w3 take on the values that we want. 
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Modeling Fixed Charges 

We need upper bounds on the 

variables x1, x2 and x3  in order to 

create the IP model.  Because of 

the constraint x1  + x2 + x3  ≤ 30, 

we can conclude that xi ≤ 30 for i = 

1, 2 and 3.  We can obtain better 

(that is, tighter) bounds if we were 

to analyze the other two linear 

constraints.  But, these bounds are 

good enough for our purposes.  

We then add  the following 

constraints to the integer 

program: 

 x1 ≤ 30 w1  

 x2 ≤ 30 w2  

 x3 ≤ 30 w3   

           w1, w2, w3  binary 

 

We just need to add these 

constraints to the previous IP.  

These constraints ensure that wi = 1 

whenever xi > 0. 
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Nooz, it looks like you 

have an error.  I agree 

that that wi = 1 

whenever xi > 0.  

However, your 

formulation also permits 

that wi = 1 even if xi = 0.  

Your feasible region is 

too big. 

My feasible region may be 

too big.  But the procedure 

would never produce a 

solution with  wi = 1 and 

 xi = 0.  It would always 

produce a higher profit to 

have  wi = 0 whenever  

xi = 0. 
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The Geometry Again 

x1 

w1 

1 28 29 30 

Above is the feasible region for the constraint:  If you 

graph the constraint: x1 ≤ 30 w1.  You will notice that 

the black points are all feasible.  These are the points 

we wanted to be feasible when we defined w1, except 

for the point (0,1).  But (0,0) has more profit than  (0,1).  

The red points are all infeasible, which is also what we 

wanted.    
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We can now put 

everything together.  We 

have to write the 

objective in terms of the 

old and new variables.  

We need to include all of 

the original constraints.  

And we need to include 

the new constraints.  

Here is what we get. 

Max    -500 w1 + 52 x1  - 300 w2  

           +  30 x2  - 200 w3 + 20 x3 

 

s.t     2  x1  +  4  x2  +    5 x3    ≤ 100 

         1  x1  +  1  x2   +   1 x3    ≤ 30  

       10  x1   + 5  x2   +   2 x3   ≤ 204 

                       x1 ≤ 30w1   

                       x2 ≤ 30 w2   

                       x3 ≤ 30 w3   

           x1, x2 , x3 ≥ 0   integer 

             w1, w2, w3  binary 

Zor’s problem with fixed 
costs 

It’s a little tricky, but I like it. 
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We’re not done yet.  

Next we are going to 

show you how to model 

an even more 

complicated non-linear 

function.  It’s a piecewise 

linear function. 

 y  =   2 x         if  0 ≤ x  ≤ 3 

  y =   9 – x      if  4 ≤ x  ≤ 7 

  y =  -5 + x      if  8 ≤ x  ≤ 9 

Assume that x is integer 

valued. 

0 3 7 9 

cost 

x 
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In order to model the non-linear function f(x) using integer and linear 

variables and using linear constraints, we will introduce 6 new 

variables.   We want them to be defined as follows. 

  y  =   2 x         if  0 ≤ x  ≤ 3 

  y  =   9 – x      if  4 ≤ x  ≤ 7 

  y  =  -5 + x      if  8 ≤ x  ≤ 9 
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And here are 

the constraints 

that are 

equivalent to 

the definitions 

of the six 

variables. 

0 ≤ x1 ≤ 3 w1  

w1 + w2 + w3 = 1 

4w2 ≤ x2 ≤ 7 w2  

8w3 ≤ x3 ≤ 9 w3  

x = x1 + x2 + x3 

w1, w2, w3 binary,     x1, x2, x3  integer 
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To complete the 

model, we need to 

take the variable y, 

which was a 

nonlinear function 

of x, and model it 

linearly using 

these 6 variables. 

0 ≤ x1 ≤ 3 w1  

w1 + w2 + w3 = 1 

4w2 ≤ x2 ≤ 7 w2  

8w3 ≤ x3 ≤ 9 w3  

x = x1 + x2 + x3 

w1, w2, w3 binary,      

x1, x2, x3 ≥ 0 and integer 

y =  2x1 + (9w2 – x2) + (-5w3 + x3)     
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0 ≤ x1 ≤ 3 w1  

w1 + w2 + w3 = 1 

4w2 ≤ x2 ≤ 7 w2  

8w3 ≤ x3 ≤ 9 w3  

z =  2x1 + (9w2 – x2) + (-5w3 + x3)     

Case 1:  w1 = 1 

Case 2:  w2 = 1 

Case 3:  w3 = 1 

0 ≤ x1 ≤ 3 w1  

0 3 7 9 

cost 

x 

x = x1 + x2 + x3 

x1 x2 x3 

3 

6 
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Cathy.  Integer 

programming makes me 

nervous.  I think that I 

understand the 

formulations.  But there is 

no way that I could 

possibly have come up 

with the formulations!  Will I 

learn how to model using 

integer programming? 

Tom, it’s better than you 

fear.  The same tricks get 

used over and over again.  

And with some practice, 

you get used to it.  In 

addition, I recommend 

that you look at the 

reference guide for IP 

formulations that is with 

the course materials. 
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It’s time for one last formulation.  We will consider the problem of 

forming 10 committees of 10 persons each from a group of 100 

people so that  

1.Each person is on one committee and  

2.No committee has two persons who hate each other, and 

3.We ask everyone for their first five choices of committees.  We 

assign everyone to one of their first five choices and try to give as 

many people their first choice as possible. 

First, we need some notation for the data of the 

problem. 

Let A = {(i, j) : persons i and j hate each other} 

Let B(k) =  { i : person i can serve on committee k}  (This 

occurs if i has chosen k as one of the top five choices.) 

Let dik = 1 if committee k is person i’s first choice. 

      dik = 0 otherwise. 
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Now for the decision variables.  These require what we refer to 

as “assignment variables.” 

Let xik =  1 if person i is assigned to committee k. 

      xik =  0 otherwise. 

We now have all the notation we need to formulate the problem. 
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Bye. 

That’s it for this tutorial.  

We hope it was helpful. 
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