
1

Transformations in Integer Programming

Amit

Hi, Mita and I are here to

introduce a tutorial on

integer programming

modeling.

Mita

You can think of it as

transformations. Our friends from

15.053 will explain how to take

constraints that are easily

understood and transform them into

integer programs.

2

This tutorial will include a

mixture of techniques as well

as lists of transformations.

A more comprehensive

document is also available. It

is entitled “IP Reference guide

for integer programming

formulations.” It has the

following sections.

IP Reference Guide

1. Subset selection problems.

2. Modular arithmetic

3. Simple logical constraints

4. Other logical constraints and
the big M method.

5. Fixed costs

6. Piecewise linear functions
and

7. The traveling salesman
problem.

3

But first, an important question.

Tom

Wow! That’s a lot of

problems. Do you really

expect students to learn

all of it?

We don’t expect students to

memorize the techniques. We’ll

focus on some problems. For

others, we will just refer to the

guide. We’ll also make subsets of

the guide available for quizzes and

the second midterm.

4

Transforming Logical Conditions
Max 16x1+ 22x2+ 12x3+ 8x4+ 11x5+ 19x6

 5x1+ 7x2+ 4x3+ 3x4+ 4x5+ 6x6 ≤ 14

 xj ∈ {0,1} for each j = 1 to 6

Nooz, the most
trusted name in fox.

I’m going to pretend to add
conditions on what I will
choose. We will then model
these logical constraints
using integer programming.

Here is the integer program
used in the first integer
programming lecture. As you
recall, it’s based on a game
show that I was on.

5

Max 16x1+ 22x2+ 12x3+ 8x4+ 11x5+ 19x6

 5x1+ 7x2+ 4x3+ 3x4+ 4x5+ 6x6 ≤ 14

 xj ∈ {0,1} for each j = 1 to 6

Suppose that I
refuse to select item
5 if I have also
selected item 1.

In this case, the

feasible solutions

for Nooz will permit

x1 = 1 or x5 = 1, but

not both.

This can be

modeled via the

linear constraint,

 x1 + x5 ≤ 1

Ella

6

I don’t get it. The
linear constraint
doesn’t look anything
like the logical
constraint.

.

Well, Tom. The important
thing isn’t whether it “makes
sense” as a logical constraint.
The important thing is that an
optimal solution for the
integer program will produce
an optimal solution for the
original problem.

7

But how will
we know
that?

In this case, we need only focus on
variables x1 and x5 to see that the
constraint works. We don’t need to think
about the other variables.

You see, Nooz just wants to eliminate the
possibility that items 1 and 5 are both
selected. In other words, we cannot have
x1 = 1 and x5 = 1. The linear constraint
accomplishes the same thing, taking into
account that x1 and x5 are both binary.

8

Another logical constraint

Max 16x1+ 22x2+ 12x3+ 8x4+ 11x5+ 19x6

 5x1+ 7x2+ 4x3+ 3x4+ 4x5+ 6x6 ≤ 14

 xj ∈ {0,1} for each j = 1 to 6

Suppose in this
illustration that I will
take item 3 if and only
if I take item 4. How
do we model that?

In this case, the feasible

solutions for Nooz will

permit x3 = 1 and x4 = 1,

or else x3 = 0 and x4 = 0,

We can model it as the

linear constraint x3 = x4.

9

Can you
explain it to
me. I liked
your last
explanation.

Well, Tom. Before Nooz added the requirement,
there were four possibilities for variables x3 and x4:

x3 = 0, x4= 0; or x3 = 0, x4= 1; or

x3 = 1, x4= 0; or x3 = 1, x4= 1. But after Nooz added
his new restriction, there were only two possibilities:

x3 = 0, x4= 0; or x3 = 1, x4= 1;

When we added the linear constraint

“x3 = x4”

we left the same two possible solutions for x3 and x4.

So, our integer linear constraints modeled Nooz’s new

problem.

10

One more logical constraint

Max 16x1+ 22x2+ 12x3+ 8x4+ 11x5+ 19x6

 5x1+ 7x2+ 4x3+ 3x4+ 4x5+ 6x6 ≤ 14

 xj ∈ {0,1} for each j = 1 to 6

OK. This will be my last
practice exercise for
my game show problem.
Suppose that I add the
constraint that I
choose exactly 3 items.

In this case, Nooz’s constraint

sounds like a linear constraint.

And it can be modeled with the

constraint.

 x1 + x2 + x3 + x4 + x5 + x6 = 3.

11

Ella, this is great. I
think I now know how to
model logical
constraints for integer
programming.

Well, Tom. I’m really glad you
understand what we’ve done so far. But
for the first examples, we only modeled
constraints involving two binary variables.
It turns out that other types of logical
constraints require other types of
modeling techniques. Nooz will show you
another couple of examples.

12

Transforming “Non-Exclusive OR” Constraints
Either 2x1 + x2 ≥ 5 or 2x3 – x4 ≤ 2 or both

Suppose that we have
already modeled a problem
as a linear program, and
we now want to add the
logical constraints
2x1 + x2 ≥ 5 or
2x3 – x4 ≤ 2 or both

This situation is more complicated,

but there is a standard technique for

doing it.

We are not assuming here that xi is

binary. In fact, we are not even

assuming that it is required to be

integer valued. But for our

transformation to work, we do need

to require it to be bounded. So we

will assume that

xi ≤ 100 for each i.

13

The Transformation

Either 2x1 + x2 ≥ 5 or 2x3 – x4 ≤ 2 or both

 2x1 + x2 ≥ 5 - My1
 2x3 – x4 ≤ 2 + M(1- y1)
 y1 ∈ {0, 1}

where M is a constant that is sufficiently
large. In this case, we could choose M to be
200 or anything larger.

In order to model this “either-

or” constraint, we add a

variable y1, which is required

to be binary, and we add two

new constraints to our original

linear program.

14

2x1 + x2 ≥ 5 - My1
2x3 – x4 ≤ 2 + M(1- y1)
y1 ∈ {0, 1}

Either 2x1 + x2 ≥ 5 or 2x3 – x4 ≤ 2 or both

I’m lost
again.

Don’t worry. I’ll explain it to you.
Just think about the integer
program. The feasible region is the
union of the feasible region with
y1 = 0 and the feasible region with
y1 = 1.

If y1 = 0, the feasible region includes
the constraints:

2x1 + x2 ≥ 5 and 2x3 – x4 ≤ 2 + M.

But because x3 ≤ 100 and we will

choose M ≥ 200. The second

constraint is automatically satisfied.

This leaves us with

 y1 = 0, 2x1 + x2 ≥ 5

15

2x1 + x2 ≥ 5 - My1
2x3 – x4 ≤ 2 + M(1- y1)
 y1 ∈ {0, 1}

Either 2x1 + x2 ≥ 5 or 2x3 – x4 ≤ 2 or both

Go on.

If y1 = 1, the feasible region includes the
constraints:

2x1 + x2 ≥ 5 - M and 2x3 – x4 ≤ 2. But

because variables are nonnegative and

M ≥ 5, the first constraint is automatically

satisfied. This leaves us with

 y1 = 1, 2x3 – x4 ≤ 2.

Putting the two cases together, we conclude
that the constraints are equivalent to

 2x1 + x2 ≥ 5 or 2x3 – x4 ≤ 2 or both.

16

Transforming If-Then Constraints

If 2x1 + x2 ≤ 5 then 2x3 – x4 ≥ 2.

Suppose that we have a linear program, but we want to add
the constraint
 “If 2x1 + x2 ≤ 5 then 2x3 – x4 ≥ 2 “. How can we do
this using integer variables plus linear constraints?

This situation is very similar to the previous one, because

the “if-then constraint” is equivalent to writing

2x1 + x2 > 5 or 2x3 – x4 ≥ 2 or both.

But there is an added complication. We don’t like a strict

inequality constraint. So, we will show how to carry out the

transformation in the special case that x1 and x2 are integer

valued. In this case
 2x1 + x2 > 5 if and only if 2x1 + x2 ≥ 6 .

17

Transforming the “if-then” constraint.

If 2x1 + x2 ≤ 5 then 2x3 – x4 ≥ 2
 is equivalent in this case to
2x1 + x2 ≥ 6 or 2x3 – x4 ≥ 2 or both.

This is equivalent to

2x1 + x2 ≥ 6 - My1
2x3 – x4 ≥ 2 - M(1- y1)
y1 ∈ {0, 1}

But this time, we leave

it as an exercise to the

student to fill in the

details of why it works.

As before, we assume

that all variables are

bounded by 100. In

this case, we can let

M be 200 or higher.

It’s all intuitively obvious
to the casual observer.

By the way, if x1 and x2

were not integer

valued, one cannot

model the “if then

constraints” correctly

using integer and

linear constraints.

18

Non-linear Objectives

Another great application

of integer programming is

non-linear objectives.

Many times in practice, the costs

are non-linear. This can be due

to “fixed costs” or quantity

discounts, or increasing marginal

costs or decreasing marginal

costs.

Our friends will present

a couple of techniques

for modeling non-linear

objectives.

19

Zor’s original problem
Maximize 52 x1 + 30 x2 + 20 x3
subject to 2 x1 + 4 x2 + 5 x3 ≤ 100
 1 x1 + 1 x2 + 1 x3 ≤ 30
 10 x1 + 5 x2 + 2 x3 ≤ 204
 x1, x2 , x3 ≥ 0 integer

I hope you remember

Zor’s problem. But

even if you don’t, you

can follow what I’m

going to say. We are

going to consider a

new (revised) problem

in which the objective

is f1(x1) + f2(x2) + f3(x3),

defined as follows.

20

1
1

1

1 1
0 0

x
w

x

2
2

2

1 1
0 0

x
w

x

3
3

3

1 1
0 0

x
w

x

The new variables represent “fixed costs”. If x1 = 0 and no gold is

produced, the cost is 0. Otherwise, Zor has to pay a fixed cost of 500

Euros before doing any production and before getting any revenue.

In order to model fixed costs using integer variables and

linear constraints, we create new variables. In this case,

we create binary variables w1, w2, and w3. We will then

create linear constraints (on the next slide) that ensures

that w1, w2 and w3 take on the values that we want.

21

Modeling Fixed Charges

We need upper bounds on the

variables x1, x2 and x3 in order to

create the IP model. Because of

the constraint x1 + x2 + x3 ≤ 30,

we can conclude that xi ≤ 30 for i =

1, 2 and 3. We can obtain better

(that is, tighter) bounds if we were

to analyze the other two linear

constraints. But, these bounds are

good enough for our purposes.

We then add the following

constraints to the integer

program:

 x1 ≤ 30 w1

 x2 ≤ 30 w2

 x3 ≤ 30 w3

 w1, w2, w3 binary

We just need to add these

constraints to the previous IP.

These constraints ensure that wi = 1

whenever xi > 0.

22

Nooz, it looks like you

have an error. I agree

that that wi = 1

whenever xi > 0.

However, your

formulation also permits

that wi = 1 even if xi = 0.

Your feasible region is

too big.

My feasible region may be

too big. But the procedure

would never produce a

solution with wi = 1 and

 xi = 0. It would always

produce a higher profit to

have wi = 0 whenever

xi = 0.

23

The Geometry Again

x1

w1

1 28 29 30

Above is the feasible region for the constraint: If you

graph the constraint: x1 ≤ 30 w1. You will notice that

the black points are all feasible. These are the points

we wanted to be feasible when we defined w1, except

for the point (0,1). But (0,0) has more profit than (0,1).

The red points are all infeasible, which is also what we

wanted.

24

We can now put

everything together. We

have to write the

objective in terms of the

old and new variables.

We need to include all of

the original constraints.

And we need to include

the new constraints.

Here is what we get.

Max -500 w1 + 52 x1 - 300 w2

 + 30 x2 - 200 w3 + 20 x3

s.t 2 x1 + 4 x2 + 5 x3 ≤ 100

 1 x1 + 1 x2 + 1 x3 ≤ 30

 10 x1 + 5 x2 + 2 x3 ≤ 204

 x1 ≤ 30w1

 x2 ≤ 30 w2

 x3 ≤ 30 w3

 x1, x2 , x3 ≥ 0 integer

 w1, w2, w3 binary

Zor’s problem with fixed
costs

It’s a little tricky, but I like it.

25

We’re not done yet.

Next we are going to

show you how to model

an even more

complicated non-linear

function. It’s a piecewise

linear function.

 y = 2 x if 0 ≤ x ≤ 3

 y = 9 – x if 4 ≤ x ≤ 7

 y = -5 + x if 8 ≤ x ≤ 9

Assume that x is integer

valued.

0 3 7 9

cost

x

26

In order to model the non-linear function f(x) using integer and linear

variables and using linear constraints, we will introduce 6 new

variables. We want them to be defined as follows.

 y = 2 x if 0 ≤ x ≤ 3

 y = 9 – x if 4 ≤ x ≤ 7

 y = -5 + x if 8 ≤ x ≤ 9

27

And here are

the constraints

that are

equivalent to

the definitions

of the six

variables.

0 ≤ x1 ≤ 3 w1

w1 + w2 + w3 = 1

4w2 ≤ x2 ≤ 7 w2

8w3 ≤ x3 ≤ 9 w3

x = x1 + x2 + x3

w1, w2, w3 binary, x1, x2, x3 integer

28

To complete the

model, we need to

take the variable y,

which was a

nonlinear function

of x, and model it

linearly using

these 6 variables.

0 ≤ x1 ≤ 3 w1

w1 + w2 + w3 = 1

4w2 ≤ x2 ≤ 7 w2

8w3 ≤ x3 ≤ 9 w3

x = x1 + x2 + x3

w1, w2, w3 binary,

x1, x2, x3 ≥ 0 and integer

y = 2x1 + (9w2 – x2) + (-5w3 + x3)

29

0 ≤ x1 ≤ 3 w1

w1 + w2 + w3 = 1

4w2 ≤ x2 ≤ 7 w2

8w3 ≤ x3 ≤ 9 w3

z = 2x1 + (9w2 – x2) + (-5w3 + x3)

Case 1: w1 = 1

Case 2: w2 = 1

Case 3: w3 = 1

0 ≤ x1 ≤ 3 w1

0 3 7 9

cost

x

x = x1 + x2 + x3

x1 x2 x3

3

6

30

Cathy. Integer

programming makes me

nervous. I think that I

understand the

formulations. But there is

no way that I could

possibly have come up

with the formulations! Will I

learn how to model using

integer programming?

Tom, it’s better than you

fear. The same tricks get

used over and over again.

And with some practice,

you get used to it. In

addition, I recommend

that you look at the

reference guide for IP

formulations that is with

the course materials.

31

It’s time for one last formulation. We will consider the problem of

forming 10 committees of 10 persons each from a group of 100

people so that

1.Each person is on one committee and

2.No committee has two persons who hate each other, and

3.We ask everyone for their first five choices of committees. We

assign everyone to one of their first five choices and try to give as

many people their first choice as possible.

First, we need some notation for the data of the

problem.

Let A = {(i, j) : persons i and j hate each other}

Let B(k) = { i : person i can serve on committee k} (This

occurs if i has chosen k as one of the top five choices.)

Let dik = 1 if committee k is person i’s first choice.

 dik = 0 otherwise.

32

Now for the decision variables. These require what we refer to

as “assignment variables.”

Let xik = 1 if person i is assigned to committee k.

 xik = 0 otherwise.

We now have all the notation we need to formulate the problem.

33

Bye.

That’s it for this tutorial.

We hope it was helpful.

MIT OpenCourseWare
http://ocw.mit.edu

15.053 Optimization Methods in Management Science
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

