
Dimensionality Reduction: Principal Components Analysis 

In data mining one often encounters situations where there are a large number of variables in 

the database. In such situations it is very likely that subsets of variables are highly correlated 

with each other. The accuracy and reliability of a classification or prediction model will suffer 

if we include highly correlated variables or variables that are unrelated to the outcome of 

interest because of over fitting. In model deployment also superfluous variables can increase 

costs due to collection and processing of these variables. The dimensionality of a model is the 

number of independent or input variables used by the model. One of the key steps in data 

mining is therefore finding ways to reduce dimensionality without sacrificing accuracy. 


A useful procedure for this purpose is to analyze the principal components of the input 

variables. It is especially valuable when we have subsets of measurements that are 

measured on the same scale and are highly correlated. In that case it provides a few (often 

less than three) variables that are weighted combinations of the original variables that 

retain the explanatory power of the full original set. 


Example 1: Head Measurements of First Adult Sons 

The data below give 25 pairs of head measurements for first adult sons in a sample [1]. 


First Adult Son 
Head Length Head Breadth 

(x1) (x1) 
191 155 
195 149 
181 148 
183 153 
176 144 
208 157 
189 150 
197 159 
188 152 
192 150 
179 158 
183 147 
174 150 
190 159 
188 151 
163 137 
195 155 
186  153 
181 145 
175  140 
192 154 
174 143 
176 139 
197 167 
190 163 



For this data the means of the variables x1 and x2 are 185.7 and 151.1 and the covariance 

matrix, S = 


Figure 1 below shows the scatter plot of points (x1, x2). The principal component 

directions are shown by the axes z1 and z2 that are centered at the means of x1 and x2. 

The line z1 is the direction of the first principal component of the data. It is the line that 

captures the most variation in the data if we decide to reduce the dimensionality of the 

data from two to one. Amongst all possible lines it is the line that if we project the points 

in the data set orthogonally to get a set of 25 (one dimensional) values using the z1 coordinate, 

the variance of the z1 values will be maximum. It is also the line that minimizes 

the sum of squared perpendicular distances from the line. (Show why this follows from 

Pythagoras’ theorem. How is this line different from the regression line of x2 on x1?) 

The z2 axis is perpendicular to the z1 axis. 


The directions of the axes are given by the eigenvectors of S. For our example the 

eigenvalues are 131.52 and 18.14. The eigenvector corresponding to the larger eigenvalue 

is (0.825,0.565) and gives us the direction of the z1 axis. The eigenvector corresponding 

to the smaller eigenvalue is (- 0.565, 0.825) and this is the direction of the z2 axis. 


The lengths of the major and minor axes of the ellipse that would enclose about 40% of 

the points if the points had a bivariate normal distribution are the square roots of the 

eigenvalues. This corresponds to rule for being within one standard deviation of the mean 

for the (univariate) normal distribution. Similarly in that case doubling the axes lengths of 

the ellipse will enclose 86% of the points and tripling it would enclose 99% of the points. 

For our example the length of the major axis is √131.5 = 11.47 and √18.14 = 4.26. In 

Figure 1 the inner ellipse has these axes lengths while the outer ellipse has axes with 

twice these lengths. 




The values of z1 and z2 for the observations are known as the principal component scores 

and are shown below. The scores are computed as the inner products of the data points 

and the first and second eigenvectors (in order of decreasing eigenvalue). 

The means of z1 and z2 are zero. This follows from our choice of the origin for the (z1, 

z2) coordinate system to be the means of x1 and x2. The variances are more interesting. 

The variances of z1 and z2 are 131.5 and 18.14 respectively. The first principal 

component, z1, accounts for 88% of the total variance. Since it captures most of the 

variability in the data, it seems reasonable to use one variable, the first principal score, to 

represent the two variables in the original data. 


Example 2: Characteristics of Wine 


The data in Table 2 gives measurements on 13 characteristics of 60 different wines from

a region. Let us see how principal component analysis would enable us to reduce the 

number of dimensions in the data. 




Table 2 




The output from running a principal components analysis on this data is shown in 
Output1 below. The rows of Output1 are in the same order as the columns of Table 1 so 
that for example row 1 for each principal component gives the weight for alchohol and 
row 13 gives the weight for proline. 

Notice that the first five components account for more than 80% of the total variation 
associated with all 13 of the original variables. This suggests that we can capture most of 
the variability in the data with less than half the number of original dimensions in the 
data. A further advantage of the principal components compared to the original data is 
that it they are uncorrelated (correlation coefficient = 0). If we construct regression 
models using these principal components as independent variables we will not encounter 
problems of multicollinearity. 

The principal components shown in Output 1 were computed after after replacing each 
original variable by a standardized version of the variable that has unit variance. This is 
easily accomplished by dividing each variable by its standard deviation. The effect of this 
standardization is to give all variables equal importance in terms of the variability. The 
question of when to standardize has to be answered using information of the nature of the 
data. When the units of measurement are common for the variables as for example dollars 



it would generally be desirable not to rescale the data for unit variance. If the variables 

are measured in quite differing units so that it is unclear how to compare the variability of 

different variables, it is advisable to scale for unit variance, so that changes in units of 

measurement do not change the principal component weights. In the rare situations where 

we can give relative weights to variables we would multiply the unit scaled variables by

these weights before doing the principal components analysis. 


Example2 (continued) 

Rescaling variables in the wine data is a important due to the heterogenous nature of the 

variables. The first five principal components computed on ther raw unscaled data are 

shown in Table 3. Notice that the variable Proline is the first principal component and it 

explains almost all the variance in the data. This is because its standard deviation is 351

compared to the next largest standard deviation of 15 for the variable Magnesium. The 

second principal component is Magnesium. The standard deviations of all the other 

variables are about 1% (or less) than that of Proline. 


The principal components analysis without scaling is trivial for this data set, The first 

four components are the four variables with the largest variances in the data and account 

for almost 100% of the total variance in the data. 


Principal Components and Orthogonal Least Squares 

The weights computed by principal components analysis have an interesting alternate 
interpretation. Suppose that we wanted to compute fit a linear surface (a straight line for 
2-dimensions and a plane for 3-dimensions) to the data points where the objective was to 
minimize the sum of squared errors measured by the squared orthogonal distances 
(squared lengths of perpendiculars) from the points to the fitted linear surface. The 



weights of the first principal component would define the best linear surface that 
minimizes this sum. The variance of the first principal component expressed as a 
percentage of the total variation in the data would be the portion of the variability 
explained by the fit in a manner analogous to R2 in multiple linear regression. This 
property can be exploited to find nonlinear structure in high dimensional data by 
considering perpendicular projections on non-linear surfaces (Hastie and Stuetzle 1989). 


