Sales of Handloom Saris

An Application of Logistic Regression

Objectives

- Illustrate importance of interpretation, domain insights from managers for interpretation and implementation
- Relevance to situations where too many products (or services) but can define more stable underlying characteristics of products (or services)
- Logistic Regression as a tool that parallels multiple linear regression in practice. Powerful analysis in a spreadsheet

Handloom Industry in India

- Decentralized, traditional, rural, co-ops
- Direct employment of 10 million persons
- Accounts for 30% of total textile production

Co-optex (Tamilnadu State)

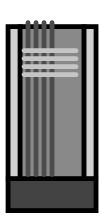
- Large: 700 outlets; \$30million; 400,000 looms
- Strengths:
 - Design variety, short run lengths
 - Majority sales through co-op shops
- Weaknesses:
 - Competing with mills difficult
 - Large inventories, high discount sales

Study Question

- Improve feedback of market to designs through improved product codes
- Assess economic impact of proposed code
- Pilot restricted to saris
 - Most difficult
 - Most valuable

A Consumer-oriented Code for Saris

• Developed with National Institute of Design



Sari components

Body

Border

Pallav

Sari Code

Body:Warp Color & Shade(WRPC, WRPS)

 $Weft Color \& \ Shade (WFTC, WFTS)$

 $B\,ody\,D\,esign\,(B\,OD\,D)$

B order: C olor, S hade, D esign, Size (BRDC,

BRDS, BRDD, BRDZ)

Pallav: Color, Shade, Design, Size (PLVC,

 $\mathsf{PLVS}, \mathsf{PLVD}, \mathsf{PLVZ})$

Code Levels

- <u>Color</u> (Warp, weft, border, pallav) 10 levels:0=red, 1=blue, 2=green, etc.
- Shade (Warp, weft, border, pallav)
 - 4 levels: 0=light, 1=medium, 2=dark, 3=shiny;
- <u>Design</u> (Body, border, pallav)
 - 23 levels: 0=plain, 1=star buttas, 2=chakra buttas, etc.
- Size (Border, pallav)
 - 3 levels: 0= broad, 1=medium, 2=narrow

Assessing Impact

Major Marketing Experiment

- 14 day high season period selected
- 18 largest retail shops selected
- 20,000 saris coded, sales during period recorded
- Logistic Regression models developed for Pr(sale of sari during period) as function of coded values.

Example data (Plain saris)

Sari#	WrpCl	BrdClr	WftClr	PlvClr	WrpS	BrdSh	WftSh	PlvSh	BrdDs	PlvDs	BrdSz	PlvSz	Response
1	2	2	2	2	2	3	2	3	0	1	0	2	1
2	0	2	0	2	2	3	2	3	0	1	0	0	1
3	0	2	0	2	2	3	2	3	0	1	1	2	1
4	1	2	1	2	0	3	0	3	0	1	1	2	1
5	1	2	1	8	1	3	1	3	0	1	0	1	1
6	4	2	4	8	2	3	2	3	0	1	0	1	1
7	0	1	3	2	0	2	2	3	0	1	0	1	0
8	1	2	1	2	2	3	2	3	0	1	0	1	1
9	1	2	1	2	0	3	0	3	1	1	2	2	1
10	4	2	2	2	1	3	1	3	1	1	2	2	1
11	1	1	1	2	0	2	0	3	0	1	0	2	1

Logistic Regression Model

• Odds(Sale)

$$\begin{split} =& \exp(\beta_0 + \beta_1 WRPC_1 + \beta_2 WRPC_2 + \beta_3 WRPC_3 \\ &+ \beta_4 WRPC_4 + \beta_5 PLVD_1 \\ &+ \beta_6 BRDZ_1 + \beta_7 BRDZ_2) \end{split}$$

Coefficient Estimates

Variable	Coeff	Odds
Constant	-0.698	
WrpCI_1	0.195	1.215
WrpCI_2	-2.220	0.109
WrpCI_3	-2.424	0.089
WrpCI_4	-0.072	0.931
PlvDs_1	1.866	6.462
BrdSz_1	-0.778	0.459
BrdSz_2	-0.384	0.681

Confusion Table

(Cut-off probability = 0.5)

Actual

Predicted

	Sale	No Sale	Total
Sale	15	5	20
No Sale	5	32	37
Total	20	37	57

Impact

- Producing only saris that have predicted probability > 0.5 will reduce slow-moving stock substantially. In the example, slow-moving stock will go down from 65% of production to 25% of production
- Even cut-off probability of 0.2 reduces slow stock to 49% of production

Insights

- Certain colors and combinations sold much worse than average but were routinely produced (e.g. green, border widths-body color interaction)
- Converse of above (e.g. plain designs, light shade body)
- Above adjustments possible within weavers' skill and equipment constraints
- Huge potential for cost savings in silk saris
- Need for streamlining code, training to code.

Reasons for versatility of Logistic Regression Models in Applications

- Derivable from random utility theory of discrete choice
- Intuitive model for choice-based samples and case-control studies
- Derivable from latent continuous variable model
- Logistic Distribution indistinguishable from Normal within ±2 standard deviations range
- Derivable from Normal population models of discrimination (pooled covariance matrix)
- · Fast algorithms
- Extends to multiple choices (polytomous regression)
- Small sample exact analysis useful for rare events (e.g. fraud, accidents, lack of relevant data, small segment of data)