
Lecture 1

k-Nearest Neighbor Algorithms

for Classification and Prediction

1

�
�

�

�

1 k-Nearest Neighbor Classification

The idea behind the k-Nearest Neighbor algorithm is to build a classification
method using no assumptions about the form of the function, y = f (x1, x2, ...xp)
that relates the dependent (or response) variable, y, to the independent (or
predictor) variables x1, x2, ...xp. The only assumption we make is that it is a
”smooth” function. This is a non-parametric method because it does not involve
estimation of parameters in an assumed function form such as the linear form
that we encountered in linear regression.

We have training data in which each observation has a y value which is
just the class to which the observation belongs. For example, if we have two
classes y is a binary variable. The idea in k-Nearest Neighbor methods is to
dynamically identify k observations in the training data set that are similar to
a new observation , say (u1, u2, ...up), that we wish to classify and to use these
observations to classify the observation into a class, v.If we knew the function f ,
we would simply compute v = f (u1, u2, ...up). If all we are prepared to assume
is that f is a smooth function, a reasonable idea is to look for observations in
our training data that are near it (in terms of the independent variables) and
then to compute v from the values of y for these observations. This is similar
in spirit to the interpolation in a table of values that we are accustomed to
doing in using a table of the Normal distribution. When we talk about neigh
bors we are implying that there is a distance or dissimilarity measure that we
can compute between observations based on the independent variables. For the
moment we will confine ourselves to the most popular measure of distance: Eu
clidean distance.�The Euclidean distance between the points (x1, x2, ...xp) and
(u1, u2, ...up) is (x1 − u1)2 + (x2 − u2)2 + · · · + (xp − up)2. We will examine
other ways to define distance between points in the space of predictor variables
when we discuss clustering methods.

The simplest case is k = 1 where we find the observation that is closest (the
nearest neighbor) and set v = y where y is the class of the nearest neighbor.
It is a remarkable fact that this simple, intuitive idea of using a single nearest
neighbor to classify observations can be very powerful when we have a large
number of observations in our training set. It is possible to prove that the
misclassification error of the 1-NN scheme has a misclassification probability
that is no worse than twice that of the situation where we know the precise
probability density functions for each class. In other words if we have a large
amount of data and used an arbitrarily sophisticated classification rule, we would
be able to reduce the misclassification error at best to half that of the simple
1-NN rule.

For k-NN we extend the idea of 1-NN as follows. Find the nearest k neigh
bors and then use a majority decision rule to classify a new observation.The
advantage is that higher values of k provide smoothing that reduces the risk
of overfitting due to noise in the training data. In typical applications k is in
units or tens rather than in hundreds or thousands. Notice that if k = n, the
number of observations in the training data set, we are merely predicting the
class that has the majority in the training data for all observations irrespective

2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

of the values of (u1, u2, ...up). This is clearly a case of oversmoothing unless
there is no information at all in the independent variables about the dependent
variable.

Example 1
A riding-mower manufacturer would like to find a way of classifying families

in a city into those that are likely to purchase a riding mower and those who are
not likely to buy one. A pilot random sample of 12 owners and 12 non-owners
in the city is undertaken. The data are shown in Table I and

Figure 1 below:
Table 1

Observation	 Income ($000’s)
60
85.5
64.8
61.5
87
110.1
108
82.8
69
93
51
81
75
52.8
64.8
43.2
84
49.2
59.4
66
47.4
33
51
63

Lot Size (000’s sq. ft.)

18.4

16.8

21.6

20.8

23.6

19.2

17.6

22.4

20

20.8

22

20

19.6

20.8

17.2

20.4

17.6

17.6

16

18.4

16.4

18.8

14

14.8

Owners=1, Non-owners=2

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

How do we choose k? In data mining we use the training data to classify the
cases in the validation data to compute error rates for various choices of k. For
our example we have randomly divided the data into a training set with 18 cases
and a validation set of 6 cases. Of course, in a real data mining situation we
would have sets of much larger sizes. The validation set consists of observations
6, 7, 12, 14, 19, 20 of Table 1. The remaining 18 observations constitute the
training data. Figure 1 displays the observations in both training and validation

3

10

15

20

25

30

35

30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

Income ($ 000,s)

L
o

t
S

iz
e

(0
00

's
 s

q
. f

t.
)

TrnOwn TrnNonOwn VldOwn VldNonOwn

data sets. Notice that if we choose k=1 we will classify in a way that is very
sensitive to the local characteristics of our data. On the other hand if we choose
a large value of k we average over a large number of data points and average
out the variability due to the noise associated with individual data points. If
we choose k=18 we would simply predict the most frequent class in the data
set in all cases. This is a very stable prediction but it completely ignores the
information in the independent variables.

Table 2 shows the misclassification error rate for observations in the valida
tion data for different choices of k.

Table 2

k 1 3 5 7 9 11 13 18
Misclassification Error % 33 33 33 33 33 17 17 50

We would choose k=11 (or possibly 13) in this case. This choice optimally

4

trades off the variability associated with a low value of k against the oversmooth
ing associated with a high value of k. It is worth remarking that a useful way
to think of k is through the concept of ”effective number of parameters”. The
effective number of parameters corresponding to k is n/k where n is the number
of observations in the training data set. Thus a choice of k=11 has an effec
tive number of parameters of about 2 and is roughly similar in the extent of
smoothing to a linear regression fit with two coefficients.

2 k-Nearest Neighbor Prediction

The idea of k-NN can be readily extended to predicting a continuous value
(as is our aim with multiple linear regression models), by simply predicting
the average value of the dependent variable for the k nearest neighbors. Often
this average is a weighted average with the weight decreasing with increasing
distance from the point at which the prediction is required.

3 Shortcomings of k-NN algorithms

There are two difficulties with the practical exploitation of the power of the
k-NN approach. First, while there is no time required to estimate parameters
from the training data (as would be the case for parametric models such as
regression) the time to find the nearest neighbors in a large training set can
be prohibitive. A number of ideas have been implemented to overcome this
difficulty. The main ideas are:

1.	 Reduce the time taken to compute distances by working in a reduced
dimension using dimension reduction techniques such as principal compo
nents;

2.	 Use sophisticated data structures such as search trees to speed up identifi
cation of the nearest neighbor. This approach often settles for an ”almost
nearest” neighbor to improve speed.

3.	 Edit the training data to remove redundant or ”almost redundant” points
in the training set to speed up the search for the nearest neighbor. an
example is to remove observations in the training data set that have no
effect on the classification because they are surrounded by observations
that all belong to the same class.

Second, the number of observations required in the training data set to
qualify as large increases exponentially with the number of dimensions p. This
is because the expected distance to the nearest neighbor goes up dramatically
with p unless the size of the training data set increases exponentially with p.
An illustration of this phenomenon, known as ”the curse of dimensionality”, is

5

the fact that if the independent variables in the training data are distributed
uniformly in a hypercube of dimension p, the probability that a point is within
a distance of 0.5 units from the center is

πp/2

2p−1pΓ(p/2)

The table below is designed to show how rapidly this drops to near zero for
different combinations of p and n, the size of the training data set.

p
n 2 3 4 5 10 20 30

10,000 7854 5236 3084 1645 25 0.0002 2×10−10 3×10−17

100,000 78540 52360 30843 16449 249 0.0025 2×10−9 3×10−16

1,000,000 785398 523600 308425 164493 2490 0.0246 2×10−8 3×10−15

10,000,000 7853982 523600 3084251 1644934 24904 0.2461 2×10−7 3×10−14

The curse of dimensionality is a fundamental issue pertinent to all classifica
tion, prediction and clustering techniques. This is why we often seek to reduce
the dimensionality of the space of predictor variables through methods such as
selecting subsets of the predictor variables for our model or by combining them
using methods such as principal components, singular value decomposition and
factor analysis. In the artificial intelligence literature dimension reduction is
often referred to as factor selection.

6

40

