Guidelines on Formulating a Management Problem as

a Linear Programming Model - Prof. Stephen Graves

General Rules of Thumb

- There is usually more than one correct formulation of a problem.
- Sometimes it is unclear whether to use inequality or equality constraints.
- Sometimes our intuition tells us that a constraint is irrelevant (i.e., it is never binding). Try to find such constraints. But when in doubt, leave the constraint in.

Identifying Decision Variables

• Start by using decision variables that agree with your intuition. Ask yourself, "What decision must I make in order to determine the outcome?"

Identifying Constraints

- Some constraints are resource-related: can't use more than available $2G2 + G3 + W1 + W2 <= 16000 \ (256K \ memory)$
- Other constraints are capacity limits
 Coal production from Consol mine <= mine capacity
- Requirements

Must satisfy demand

• Quality Constraints

Must have at least 19 % average volatility in coking coal

Policy Constraints

At least 50% union mines

Must satisfy workstation demand from key customer

Balance Constraints

Conservation of Flow: Flow In equals Flow Out

Inventory @ t+1 equals Inventory @ t plus production minus demand

Identifying Objective Function

- maximize revenue minus cost
 minimize cost minus revenue
 minimize number of people hired
- Be careful to make sure all costs and profits are properly accounted for, appearing once and only once.
- net out any sunk or fixed costs

Classes of LP Models

- 1. Product Mix (e.g., Digital Short Term Planning)
- 2. Blending
- 3. Multi Period Planning
- 4. Multi Stage Coordination
- 5. Covering and Cutting Stock Problems
- 6. Design Parameter Optimization
- 7. Network Planning
- 8. Network Design
- 9. Capital Budgeting
- 10. Process Design and Layout

15.066J

Example - Logistics Planning Problem

One Product	Bulk Road Salt
Planning Period	Month
Planning Horizon	12 Months: April March
Production Locations:	4 Mines
Stockage Locations:	4 Mines
	50 Stockpiles
	100's of Customer Sites
Transportation:	Mines to Stockpiles by Rail (Barges)
	Stockpiles to Customers by Truck
Issues:	Production Plan for Seasonal Demand Transportation and Inventory Plan Decision Support for Bidding Process
	Decision Support for Diadning Process
Indices: imines; j-	-stockpiles; kcustomers; ttime periods
Data Requirements:	
demand fore	casts
capacities cost coefficients	
Production at i in tir	ne period t
Inventory at i at end	of time period t
Inventory at j at end	of time period t
Inventory at k at end	l of time period t
Rail shipments from	i i to j in t
Truck shipments fro	m j to k in t

Constraints

- Inventory Flow Balance
- Limits on Production/Transportation Activities

mine production

rail cars

inbound at stockpiles

outbound link limit

inventory storage

• Objective

MIN Cost = production costs + inventory holding costs + mine to stockpile shipment costs + stockpile to customer shipment costs