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A probability space, defined by Kolmogorov (1903-1987) consists of: 

•	 A set of outcomes S, e.g., 

for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 	
1 1 2 1 6 

for the roll of two dice, S =
   

,

  
,

  
,

  
, . . . ,

1 2 1 3

temperature on Monday, S = [ 50, 50]. 
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•	 A set of events, where an event is a subset of S, e.g., 
	

1 3 3 
roll at least one 3 : , . . . ,

3 1 3
 temperature above 80◦ : (80

  
, 150]

  
 

    

The union, intersection and complement of events are also events (an algebra). 

•	 A probability measure, which gives a number between 0 and 1 to each event, where 
P (S) = 1 and 

A ∩ B = ∅ ⇒ P (A ∪ B) = P (A) + P (B). 

Think of P as measuring the size of a set, or an area of the Venn diagram. 

The conditional probability of event A given event B is: 

P (A ∩ B)
P (A|B) := . 

P (B) 
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Event A is independent of B if P (A|B) = P (A). That is, knowing B occurred doesn’t 
impact whether A occurred (e.g. A and B each represent an event where a coin returned 
heads). In that case, 

P (A ∩ B)
P (A) = P (A|B) := so P (A ∩ B) = P (A)P (B). 

P (B) 

Do not confuse independence with disjointness. Disjoint events A and B have P (A∩B) = 0. 

For a partition B1, . . . , Bn, where Bi ∩ Bj = ∅ for i  · · Bn = S then= j and B1 ∪ B2 · 

A = (A ∩ B1) ∪ (A ∩ B2), . . . , ∪(A ∩ Bn) 

and thus 
n  

P (A) = P (A ∩ Bi) = P (A|Bi)P (Bi) 
i=1 i 

from the definition of conditional probability. 

Bayes Theorem 
P (A|B)P (B)

P (B|A) = . 
P (A) 

Derivation of Bayes Rule 
Monty Hall Problem 

A random variable (r.v.) assigns a number to each outcome in S. 

Example 1: toss 2 dice: random var. X is the sum of the numbers on the dice.  
Example 2: collections of transistors: random var X is the min of the lifetimes of the  
transistors.  
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A probability density function (pdf. . . or probability mass function pmf) for random variable 
X is defined via: 

• f(x) = P (X = x) for discrete distributions 

(Note f(x) ≥ 0,
 

x f(x) = 1.)  b• P (a ≤ X ≤ b) =
a f(x)dx for continuous distributions. 

(Note f(x) ≥ 0,
 
f(x) = 1.) 

The cumulative distribution function (cdf) for r.v. X is:  

F (x) = P (X ≤ x) 
= f(k) (discrete) 

k≤x� x 

= f(y)dy (continuous) 
−∞ 
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The expected value (mean) of an r.v. X is: 

E(X) = µ = xf(x) (discrete) 
x 

E(X) = µ = xf(x)dx (continuous). 
x 

Expectation is linear, meaning 

E(aX + bY ) = aE(X) + bE(Y ). 

Roulette  

The variance of an r.v. X is: 

V ar(X) = σ2 = E(X − µ)2 . 

Variance measures dispersion around the mean. Variance is not linear: 

V ar(aX + b) = a 2V ar(X). 

The standard deviation (SD) is:  
SD(x) = σ = V ar(X). 

Note that people sometimes use another definition for variance that is equivalent: 

V ar(X) = σ2 = E(X2) − (E(X))2 . 

Sum of Two Dice  
Quantiles/Percentiles The pth quantile (or 100pth percentile), denoted θp, of r.v. X obeys:  

P (X ≤ θp) = p.  

Note: 50th percentile, or .5th quantile, is the median θ.5. 

Exponential Distribution  
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Section 2.5.	 Jointly Distributed R.V.’s 

Jointly distributed r.v.’s have joint pdf’s: f(x, y) = P (X = x, Y = y). 

Their covariance is defined by 

Cov(X, Y ) := σx,y := E[(X − µx)(Y − µy)]. 

The first term considers dispersion from the mean of X, the second term is dispersion from 
the mean of Y . 

If X and Y are independent, then E(XY ) = E(X)E(Y ) = µxµy (see “expected value” on 
Wikipedia). So, multiplying the terms out and passing the expectation through, we get: 

Cov(X, Y ) = E[(X − µx)(Y − µy)] = E(XY ) − µxE(Y ) − µyE(X) + µxµy = 0. 

Useful relationships: 

1. Cov(X, X) = E[(X − µx)
2] = V ar(X) 

2. Cov(aX + c, bY + d) = ab Cov(X, Y ) 

3. V ar(X±Y ) = V ar(X)+V ar(Y )±2Cov(X, Y ) where Cov(X, Y ) is 0 if X and Y are indep. 

The correlation coefficient is a normalized version of covariance so that its range is [-1,1]: 

Cov(X, Y ) σXY 
ρXY := Corr(X, Y ) :=  = . 

V ar(X)V ar(Y ) σX σY 

Section 2.6. 

Chebyshev’s Inequality (we don’t use it much in this class) 

σ2 
For c > 0, P (|X − EX| ≥ c) ≤ .

2
 

c

Chebyshev’s inequality is useful when you want a upper bound on how often an r.v. is far 
from its mean. You can’t use it for directly calculating P (|X−EX| ≥ c), only for bounding it. 

Weak Law of Large Numbers 
Let’s say we want to know the average number of pizza slices we will sell in a day. We’ll 
measure pizza sales over the next couple weeks. Each day gets a random variable Xi which 
represents the amount of pizza we sell on day i. Each Xi has the same distribution, because 
each day basically has the same kind of randomness as the others. Let’s say we take the 
average of over the couple weeks we measured. There’s a random variable for that, it’s 
¯  X = 1

n 

•	 Do

∑
i Xi. 
¯es X have anything to do with the average pizza sales per day? In other words, does 

 ¯            ¯measuring X tell us anything about the Xi’s? For instance, (on average) is X close to 
the average sales per day, E(Xi)? 
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• Does it matter what the distribution of pizza sales is? For instance, what if we usually 
have 1-4 customers but sometimes we have a conference where we have 45-50 people; 

a weird ¯that is kind of distribution. Does that mean that the Xi needs to be adjusted 
in some way to help us understand the Xi’s? 

It turns out the first answer is yes, in fact  ¯pretty often, the average X is very similar to the 
average value of Xi. Especially when n is large. The second answer is also yes, but as long 

 ¯as n is large, X is very similar to the average value of Xi. This means that no matter what 
the distribution is, as long as we measure enough days, we can get a pretty good sense of 
the average pizza sales. 

¯ ¯  Weak LLN: Let X be a r.v. for the sample mean X = 1
 distributed) 

n i Xi of n iid (independent and 
identically r.v.’s. The distribution for each Xi has finite mean µ and variance 
2 σ . Then for any c > 0, 

∑ 
P (|X̄ − µ| ≥ c) → 0 as n → ∞. 

eak   ¯W  LLN says that X approaches µ when n is large. Weak LLN is nice because it tells us 
that no matter what the distribution of the Xi’s is, the sample mean approaches the true 
mean. 

Proof Weak LLN using Chebyshev  

Section 2.7. Selected Discrete Distributions 

Bernoulli X ∼ Bernoulli(p) “coin flipping” 

f(x) = P (X = x) = 
{

p if x = 1 “heads” 
1 − p if x = 0 “tails” 

Binomial X ∼ Bin(n, p) “n coins flipping,” “balls in a bag drawn with replacement,” “balls 
in an infinite bag”  

n
)

(
 

f(x = P (X = x) = 
 )
px (1 − p)n−x for x = 0, 1, . . . , n, 

x 

where
 
n
x

 
is the number of ways to distribute x successes and n − x failures, ( 

n n! 
= . 

x

) 
x!(n − x)! 

(If you have n coins flipping, f(x) is the probability to get x heads, p is the probability of 
heads.) X ∼ Bin(n, p) has 

E(X) = np, V ar(X) = np(1 − p). 

You’ll end up needing these facts in Chapter 9. 
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Hypergeometric X ∼ HyGE(N, M, n) “balls in a bag drawn without replacement,” where:  
N is the size of the total population (the number of balls in the bag),  
M is the number of items that have a specific attribute (perhaps M balls are red),  
n is our sample size,  
f(x) is the probability that x items from the sample have the attribute.  

ways to draw x balls ways to draw n − x balls M N − M 
with attribute without attribute x n − x 

f(x) = 
ways to draw n balls 

= 
N 

. 

n 

Multinomial Distribution “generalization of binomial” 
Think of customers choosing backpacks of different colors. A random group of n customers 
each choose their favorite color backpack. There is a multinomial distribution governing how 
many backpacks of each color were chosen by the group. Below, xk is the number of people 
who ordered the kth color backpack. Also, f(x) is the probability that x1 customers chose 
color 1, x2 customers chose color 2, and so on. 

f(x1, x2, x3, . . . , xk) = P (X1 = x1, X2 = x2, X3 = x3, . . . , Xk = xk) 
n! x1 x2 x3 xk= p p p . . . p 1 2 3 k x1!x2!x3! . . . xk!

where xi ≥ 0 for all i and i xi = n (there are n total customers), and pi is the probability 
that outcome i occurs. (pi is the probability to choose the ith color backpack). 

2.8 Selected Continuous Distributions 

Uniform Distribution X ∼ U [a, b] 
1 a ≤ x ≤ b 

f(x) = b−a 
0 otherwise 

Poisson Distribution X ∼ P ois(λ) “binomial when np → λ,” “rare events” 

e−λλx 
f(x) = x = 0,1,2,. . . 

x! 

X ∼ P ois(λ) has 
E(X) = λ, V ar(X) = λ. 
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Exponential Distribution X ∼ Exp(λ) “waiting times for Poisson events” 

f(x) = λe−λx for x ≥ 0 

Gamma Distribution X ∼ Gamma(λ, r) “sums of r iid exponential r.v.’s,” “sums of waiting 
times for Poisson events” 

r−1 −λxλrx e
f(x) = for x ≥ 0,

Γ(r) 
where Γ(r) is the “Gamma” function, which is a generalization of factorial. 

Customers on line  

Normal (Gaussian) Distribution X ∼ N(µ, σ2) 

1 −(x−µ)2/2σ2 
f(x) = √ e for ∞ < x < ∞. 

σ 2π 
We have that: 

E(X) = µ, V ar(X) = σ2 . 
We often standardize a normal distribution by shifting its mean to 0 and scaling its variance 
to 1: 

X − µ
If X ∼ N(µ, σ2) then Z = ∼ N(0, 1) “standard normal” 

σ 

Since we can standardize any gaussian, let’s work mostly with the standard normal Z ∼  
N(0, 1): 

pdf: φ(z) = 
1 √ e −z2/2 

2π 
z 

cdf: Φ(z) = P (Z ≤ z) = φ(y)dy 
−∞ 

We can’t integrate the cdf in closed form. This means that in order to get from z to Φ(z)  
(or the reverse) we need to get the answer from a book or computer where they integrated  
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it numerically, by computing an approximation to the integral. MATLAB uses the command 
normcdf. Table A.3 in your book has values for Φ(z) for many possible z’s. Read the table 
left to right, and up to down. So if the entries in the table look like this: 

z 0.03 

−2.4 0.0075 

This means that for z = −2.43, then Φ(z) = P (Z ≤ z) = 0.0075. So the table relates z to 
Φ(z). You can either be given z and need Φ(z) or vice versa. 

75th percentile calculation 

Denote zα as the solution to 1 − Φ(z) = α. 

zα is called the upper α critical point or the 100(1 − α)th percentile.  

Linear Combinations of Normal r.v.’s are also normal.  

For n iid observations from N(µ, σ2), that is.  

Xi ∼ N(µ, σ2) for i = 1, . . . , n, 

¯the sample mean X obeys: 
σ2 

X̄ ∼ N µ, . 
n 

Hmm, where have you seen σ2/n before? Of course! You saw it here:   
V ar( X̄) = V ar

1 
n 

Xi = 
1 
n2 V ar(Xi) = 

nσ2 

n2 = 
σ2 

n 
. 

i i 

This is the variance of the mean of n iid r.v.’s who each have V ar(Xi) = σ2 . 
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