
Central Limit Theorem 
(Convergence of the sample mean’s distribution to the normal distribution) 

Let X1, X2, . . . , Xn be a random sample drawn from any distribution with a finite mean µ 
and variance σ2 . As n →∞, the distribution of: 

X̄ − µ√ 
σ/ n 

“converges” to the distribution N(0, 1). In other words, 

X̄ − µ√ ≈ N(0, 1). 
σ/ n 

X̄−µNote 1: What is 
σ/ 
√ 

n ? Remember that we proved that E( X̄) = µ and Var( X̄) = σ2/n. 
¯That means we are taking the random variable X, subtracting its mean, and dividing by its 

standard deviation. It’s a z-score! 

Note 2: “converge” means “convergence in distribution:”   
X̄ − µ

lim P √ ≤ z = Φ(z) for all z. 
n→∞ σ/ n 

Don’t worry about this if you don’t understand (it’s beyond the scope of 15.075).
 

Note 3: CLT is really useful because it characterizes large samples from any distribution.
 
As long as you have a lot of independent samples (from any distribution), then the distribu
tion of the sample mean is approximately normal.
 

Let’s demonstrate the CLT.
 
Pick n large. Draw n observations from U [0, 1] (or whatever distribution you like). Repeat
 
1000 times.
  

x1 x2 x3 xn x̄ = n 
i=1 xi 

t = 1 .21 .76 .57 .84 (.21+.76+. . . )/n 
: 
: 
: 

t = 1000 

Then, histogram the values in the rightmost column and it looks normal.
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CLT demo 
n=z; 
myrand=rand(n,500); 
mymeans=mean[myrand); 
hist(mymeans) 
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Sampling Distribution of the Sample Variance - Chi-Square Distribution
 

From the central limit theorem (CLT), we know that the distribution of the sample mean is 
approximately normal. What about the sample variance? 

Unfortunately there is no CLT analog for variance... 
But there is an important special case, which is when X1, X2, . . . , Xn are from a normal 
distribution. (Recall that the CLT applies to arbitrary distributions.) 
If this is true, the distribution of the sample variance is related to the Chi-Square (χ2) dis
tribution. 

Let Z1, Z2, . . . , Zν be N(0, 1) r.v.’s and let X = Z1
2 + Z2

2 + · · · + Zν 
2 . Then the pdf of X 

can be shown to be: 
1 ν/2−1 −x/2f(x) = x e for x ≥ 0. 

2ν/2Γ(ν/2) 

This is the χ2 distribution with ν degrees of freedom (ν adjustable quantities). (Note: the 
χ2 distribution is a special case of the Gamma distribution with parameters λ = 1/2 and 
r = ν/2.) 

Fact proved in book: 

If X1, X2, . . . , Xn are iid N(µ, σ) r.v.’s, then 

(n − 1)
S2 ∼ χ2 

n−1. σ2 

(n−1)That is, the sample variance times a constant has a χ2 distribution.
σ2 n−1 

Technical Note: we lost a degree of freedom when we used the sample mean rather than the 
true mean. In other words, fixing n − 1 quantities completely determines s2, since:  

2 1 
x)2 s := (xi − ¯ . 

n − 1
i 

Let’s simulate a χn
2 
−1 distribution for n = 3. Draw 3 samples from N(0, 1). Repeat 1000 

times.  3 z1 z2 z3 i=1 z
2 
i 

t = 1 -0.3 -1.1 0.2 1.34 
: 
: 
: 

t = 1000 

Then, histogram the values in the rightmost column.
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For the chi-square distribution, it turns out that the mean and variance are:
 

E(χ2 
ν ) = ν 

Var(χ2 
ν ) = 2ν. 

We can use this to get the mean and variance of S2: 

σ2χ2 σ2 

E(S2) = E n−1 = (n − 1) = σ2 , 
n − 1 n − 1
σ2χ2 σ4 σ4 2σ4 

Var(S2) = Var n−1 = Var(χ2 ) = 2(n − 1) = . 
n − 1 (n − 1)2 n−1 (n − 1)2 n − 1 

So we can well estimate S2 when n is large, since Var(S) is small when n is large. 

Remember, the χ2 distribution characterizes normal r.v. with known variance. You need to 
know σ! Look below, you can’t get the distribution for S2 unless you know σ. 

(n − 1)S2 

X1, X2, . . . , Xn ∼ N(µ, σ2) → 
σ2 

∼ χ2 
n−1 
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Student’s t-Distribution
 

Let X1, X2, . . . , Xn ∼ N(µ, σ2). William Sealy Gosset aka “Student” (1876-1937) was 
looking at the distribution of: 

X̄ − µ
T = √ 

S/ n 
X−µContrast T with 
¯
√ which we know is N(0, 1).

σ/ n 

So why was Student looking at this?
 
Because he had a small sample, he didn’t know the variance of the distribution and couldn’t
 
estimate it well, and he wanted to determine how far x̄ was from µ. We are in the case of:
 

• N(0, 1) r.v.’s 

¯• comparing X to µ 

• unknown variance σ2 

• small sample size (otherwise we can estimate σ2 very well by s2.) 

Rewrite 
X̄−µ

X̄ − µ σ/ 
√ 

n Z 
T = √ = √ = _ . 

S/ n √S2 1√ S2/σ2 
n σ/ n 

The numerator Z is N(0, 1), and the denominator is sort of the square root of a chi-square,
 
because remember S2(n − 1)/σ2 ∼ χ2 

n−1.
 
Note that when n is large, S2/σ2 → 1 so the T-distribution → N(0, 1).
 

Student showed that the pdf of T is:   
ν+1 −(ν+1)/2Γ
2 t2 

f(t) = √ 1 + −∞ < t < ∞ 
πνΓ (ν/2) ν 

( )
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Snedecor’s F-distribution
 

The F -distribution is usually used for comparing variances from two separate sources. 
Consider 2 independent random samples X1, X2, . . . , Xn1 ∼ N(µ1, σ1

2) and Y1, Y2, . . . , Yn2 ∼ 
N(µ2, σ2

2). Define S1
2 and S2

2 as the sample variances. Recall: 

S2(n1 − 1) S2(n2 − 1)1 ∼ χ2 
n1−1 and 2 ∼ χ2 

n2−1. σ2 σ2 
1 2 

The F-distribution considers the ratio: 

S2/σ2 χ2 
n1−1/(n1 − 1)1 1 ∼ . 

S2
2/σ2

2 χ2 
n2−1/(n2 − 1) 

When σ2 = σ2, the left hand side reduces to S2/S2
2 .1 2 1 

We want to know the distribution of this! Speaking more generally, let U ∼ χ2 and V ∼ χ2 .ν1 ν2 

Then W = U/ν1 has an F-distribution, W ∼ Fν1,ν2 .V/ν2 

The pdf of W is: 

ν1/2 −(ν1+ν2)/2
Γ ((ν1 + ν2)/2) ν1 ν1ν1/2−1f(w) = w 1 + w for w ≥ 0. 
Γ(ν1/2)Γ(ν2/2) ν2 ν2 

There are tables in the appendix of the book which solve: 

P (χ2 
ν > χ2 ) = αν,α

↑ ↑ 

P (Tν > tν,α) = α 

↑ ↑ 

P (Fν1,ν2 > fν1,ν2,α) = α 

↑ ↑ 

Note that because F is a ratio, 
1 

Fν1,ν2 = 
Fν2,ν1 

which you might need to use in order to look up the F-scores in a table in the book. Actually, 
you will need to know: 

1 
fν1,ν2,1−α = . 

fν2,ν1,α 

( )( )
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