Confidence Intervals

Instead of reporting a "point estimator," that is, a single value, we want to report a confidence interval [L, U] where:

$$P\{L \le \theta \le U\} = 1 - \alpha,$$

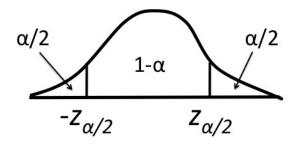
the probability of the true value θ being within [L, U] is pretty large.

Here, [L, U] is a <u>100(1 - α)% confidence interval</u>. (Here, [L, U] is <u>two-sided</u> meaning $L \neq -\infty$, $U \neq \infty$.)

Let's derive the confidence intervals for μ when $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ where we assume σ is known. Start with:

$$Z = \frac{(\bar{X} - \mu)}{\sigma/\sqrt{n}} \sim N(0, 1).$$

Now, split area α between the two tails:



(Here we define z_{α} to solve $P(Z \ge z_{\alpha}) = \alpha$, meaning that α of the probability mass is on the right of z_{α} .) So we know:

$$1 - \alpha = P(-z_{\alpha/2} \leq Z \leq z_{\alpha/2}) \text{ where } Z = \frac{X - \mu}{\sigma/\sqrt{n}}$$

$$\uparrow \qquad \uparrow \qquad (*1) \qquad (*2)$$

and we want:

 $1 - \alpha = P(L \le \mu \le U)$ for some L and U.

Let's solve it on the left for (*1)

and on the right for (*2):

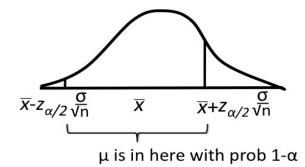
$$-z_{\alpha/2} \leq Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \qquad \qquad Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2}$$
$$-z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \bar{X} - \mu \qquad \qquad \bar{X} - \mu \leq z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
$$\mu \leq \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \qquad \qquad \bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu.$$

Putting it together we have:

$$1 - \alpha = P \begin{bmatrix} \bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \end{bmatrix}$$

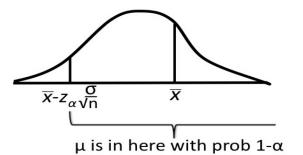
$$1 - \alpha = P \begin{bmatrix} L \leq \mu \leq U \end{bmatrix}.$$

This confidence interal $[\bar{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}]$ is a $(1 - \alpha)$ level <u>z-interval</u>.

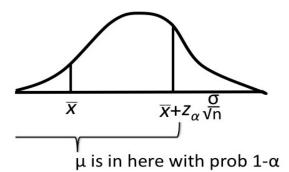


Example (confidence interval for mean revenue)

A <u>one-sided</u> confidence interval can be made as well, by cutting off probability α from only one side of the distribution,



that is, $\mu \geq \bar{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$ or $\mu \in [\bar{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$ (Lower 1-sided) and:



 $\mu \leq \bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}} \text{ or } \mu \in (-\infty, \bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}] \text{ (Upper 1-sided).}$

15.075J / ESD.07J Statistical Thinking and Data Analysis Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.