Chapter 7 Notes - Inference for Single Samples

- You know already for a large sample, you can invoke the CLT so:

$$
\bar{X} \sim N\left(\mu, \sigma^{2}\right)
$$

Also for a large sample, you can replace an unknown σ by s.

- You know how to do a hypothesis test for the mean, either:
- calculate z-statistic

$$
z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}
$$

and compare it with z_{α} or $z_{\alpha / 2}$.

- calculate pvalue and compare with α or $\alpha / 2$.
- calculate CI and see whether μ_{0} is within it.

Let's add two more calculations.

1) Determine n to achieve a certain width for a 2 -sided confidence interval. Of course, small width \rightarrow large n.

Derivation of Sample Size Calculation for CI

$$
n=\left(\frac{z_{\alpha / 2} \sigma}{E}\right)^{2} \quad \text { (Sample Size Calculation) }
$$

where E is the half-width of the CI.

Example

2) Power Calculation

- For upper 1-sided z-tests:

$$
\begin{aligned}
& H_{0}: \mu \leq \mu_{0} \\
& H_{1}: \quad \mu>\mu_{0}, \text { in fact, we'll take } \mu=\mu_{1} .
\end{aligned}
$$

The calculation only makes sense if $\mu_{1}>\mu_{0}$. We want to know what the power of the test is to detect mean μ_{1}. We'll compute power as a function of μ_{1}.

Derivation of Power Calculation for Upper 1-sided z-tests

$$
\pi\left(\mu_{1}\right)=P\left(\text { test rejects } H_{0} \text { in favor of } H_{1} \mid H_{1}\right)=\Phi\left(-z_{\alpha}+\frac{\mu_{1}-\mu_{0}}{\sigma / \sqrt{n}}\right)
$$

Now we can consider $\pi\left(\mu_{1}\right)$ as a function of μ_{1}. Again, the alternative hypothesis only make sense if $\mu_{1}>\mu_{0}$. As μ_{1} increases, what happens to $\pi\left(\mu_{1}\right)$?

- For lower 1-sided tests,

$$
\pi\left(\mu_{1}\right)=\Phi\left(-z_{\alpha}+\frac{\mu_{0}-\mu_{1}}{\sigma / \sqrt{n}}\right)
$$

The alternative hypothesis only makes sense when $\mu_{1}<\mu_{0}$. As μ_{1} increases (and gets closer to a μ_{0}), what happens to $\pi\left(\mu_{1}\right)$?

- For 2-sided tests,

$$
\begin{aligned}
& \pi\left(\mu_{1}\right)=\left(\left.P \quad \bar{X}<\mu_{0}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \right\rvert\, \mu=\mu_{1}\right)+P\left(\left.\bar{X}>\mu_{0}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \right\rvert\, \mu=\mu_{1}\right) \\
& =\Phi\left(-z_{\alpha / 2}+\frac{\mu_{0}-\mu_{1}}{\sigma / \sqrt{n}}\right)+\Phi\left(-z_{\alpha / 2}+\frac{\mu_{1}-\mu_{0}}{\sigma / \sqrt{n}}\right)
\end{aligned}
$$

As μ_{1} changes, what happens to $\pi\left(\mu_{1}\right)$?

3) Sample size calculation for power. Want to find the n required to guarantee a certain power, $1-\beta$, for an α-level z-test.

Let $\delta:=\mu_{1}-\mu_{0}$ so that $\mu_{1}=\mu_{0}+\delta$.

- For upper 1-sided, we have (look up at the power calculation we did for upper 1-sided):

$$
\pi\left(\mu_{1}\right)=\pi\left(\mu_{0}+\delta\right)=\Phi\left(-z_{\alpha}+\frac{\delta}{\sigma / \sqrt{n}}\right)=1-\beta
$$

Since our notation says that z_{β} is defined as the number where $\Phi\left(z_{\beta}\right)=1-\beta$:

$$
-z_{\alpha}+\frac{\delta}{\sigma / \sqrt{n}}=z_{\beta} .
$$

Now solve that for n :

$$
n=\left[\frac{\left(z_{\alpha}+z_{\beta}\right) \sigma}{\delta}\right]^{2}
$$

- For lower 1 -sided, n is the same by symmetry.
- For 2 -sided, turns out one of the two terms of $\pi\left(\mu_{1}\right)$ can be ignored to get an approximation:

$$
n \approx\left[\frac{\left(z_{\alpha / 2}+z_{\beta}\right) \sigma}{\delta}\right]^{2}
$$

Remember to round up to the next integer when doing sample-size calculations!

Example

7.2 Inferences on Small Samples

If $n<30$, we often need to use the t-distribution rather than z-distribution $N(0,1)$ since s doesn't approximate σ very well. Need $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$.

The bottom line is that we replace:

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { by } \quad T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

for a t-test on the mean. Replace z_{α} by $t_{n-1, \alpha}$. Replace σ by S. There's a chart in your book on page 253 that summarizes this.

Note that the power calculation is harder for t-tests, so for this class, just say $S \approx \sigma$ and use the normal distribution power calculation. You'll get an approximation.

Example

7.3 Inferences on Variances

Assume $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$. Inferences on variance are very sensitive to this assumption, so inference only with caution!
The bottom line is that we replace:

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { by } \quad \chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}
$$

(and test for σ^{2} not μ). Replace z_{α} by $\chi_{n-1,1-\alpha}^{2}$ and/or $\chi_{n-1, \alpha}^{2}$.

Hypothesis tests on variance are not quite the same as on the mean. Let's do some of the computations to show you. First, we'll compute the CI.

2-sided CI for σ^{2}. As usual, start with what we know:

$$
\begin{array}{rlll}
1-\alpha=P\left(\chi_{n-1,1-\alpha / 2}^{2}\right. & \leq \quad \frac{(n-1) S^{2}}{\sigma^{2}} & \left.\leq \chi_{n-1, \alpha / 2}^{2}\right) \quad \text { and remember } \chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}} \\
& \Uparrow \tag{}\\
& \left.{ }^{*} 1\right) & \left({ }^{*} 2\right)
\end{array}
$$

and we want:

$$
1-\alpha=P\left(L \leq \sigma^{2} \leq U\right) \text { for some } L \text { and } U
$$

Let's solve it on the left for $\left({ }^{*} 1\right)$ and on the right for $\left({ }^{*} 2\right)$:

$$
\sigma^{2} \leq \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}} \quad \frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq \sigma^{2}
$$

Putting it together we have:

$$
\begin{array}{rrrr}
1-\alpha= & P[& \frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq & \sigma^{2} \leq \\
1-\alpha= & P\left[\begin{array}{l}
\left.\frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right] \\
\end{array} r \leq \frac{\sigma^{2} \leq}{U]} .\right.
\end{array}
$$

The $100(1-\alpha) \%$ confidence interval for σ^{2} is then

$$
\frac{(n-1) s^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}
$$

Similarly, 1-sided CI's for σ^{2} are:

$$
\frac{(n-1) s^{2}}{\chi_{n-1, \alpha}^{2}} \leq \sigma^{2} \quad \text { and } \quad \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{n-1,1-\alpha}^{2}}
$$

Hypothesis tests on Variance (a chi-square test)

To test $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ vs $H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$, we can either:

- Compute χ^{2} statistic:

$$
\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}
$$

and reject H_{0} when either $\chi^{2}>\chi_{n-1, \alpha / 2}^{2}$ or $\chi^{2}<\chi_{n-1,1-\alpha / 2}^{2}$.

- Compute pvalue:

First we calculate the probability to be as extreme in either direction:

depending on which is smaller (more extreme). The probability to obtain a χ^{2} at least as extreme under H_{0} is:

$$
2 \min \left(P_{U}, P_{L}\right)
$$

This accounts for being extreme in either direction.

- Compute CI (already done)

Table 7.6 on page 257 summarizes the chi-square hypothesis test on variance.

Note that this is not the most commonly used chi-square test!
See Wikipedia: A chi-square test is any statistical hypothesis test in which the sampling distribution of the test statistic is a chi-square distribution when the null hypothesis is true...
(In this case, we have normal random variables, so the distribution of the test statistic $\frac{(n-1) S^{2}}{\sigma^{2}}$ is chi-square.)

Example

MIT OpenCourseWare
http://ocw.mit.edu

15.075J / ESD.07J Statistical Thinking and Data Analysis

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

