
Chapter 8 : Inferences for Two Samples
 

In previous chapters, we had only one sample and we wanted to see whether 
its mean or variance might be above or below a certain value. In Chapter 
8 we compare statistics from 2 populations, and we want to know whether 
one mean is larger than another, whether the means are different, etc. The 
techniques of this chapter are very useful for comparative studies. 

Independent Samples Design: 

There are a few different ways we can do an experiment. In an independent 
samples design, we have an independent sample from each population. The 
data from the two groups are independent. 

Sample 1: x1, . . . xn1 

Sample 2: y1, . . . yn2 

Here n1 does not need to equal n2, that is, the samples can be different sizes. 
The xi’s and yi’s are all statistically independent. The difference is that the 
yi’s receive the treatment and the xi’s do not. For example, the xi’s and 
yi’s are student grades. The first group is the control group, and the second 
group was taught by a different method. 

Note: How might you compare 2 independent samples graphically? Let’s say 
you wanted to find out if one sample had generally larger values than the 
other for instance? 

Matched Pairs Design: 

In the matched pairs design, the observations from each sample are paired. 
An example is that the xi’s are the student scores before a training program, 
and the yi’s are the scores of the same students after the training program. 

pair: 1, 2, . . . , n 

Sample 1: x1, x2, . . . , xn 

Sample 2: y1, y2, . . . , yn 

Here the ith observation in the first group is similar in some way to the ith 

observation in the second group. The way in which they are similar is called 
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the blocking factor. 

Note: How might you consider matched pairs graphically? 

8.3 Comparing means of 2 populations 

We will test whether the mean of one of the populations is different than 
the other by a difference of δ0. 

1) Independent Samples Design for Large Samples (n1, n2 > 30): 

Sample 1: x1, . . . , xn1 from a population with unknown µ1 and σ1
2 with sample 

2mean x̄ and sample variance s1. 
Sample 2: y1, . . . , yn2 from a population with unknown µ2 and σ2

2 with sample 
2mean ȳ and sample variance s2. 

We are testing: 

H0 : µ1 − µ2 = δ0 

H1 :  µ1 − µ2 = δ0 

So, if we want to test whether or not the means are different, we set δ0 = 0. 

The main idea is that since n1 and n2 are both large, we are going to use the 
¯central limit theorem to say that the distribution of X − Ȳ is approximately 

normal. We can calculate: 

E(X̄ − Ȳ ) = µ1 − µ2 

Var( X̄ − Ȳ ) = Var( ¯ Y ) + 2Cov( ¯ Y )X) + Var(− ̄ X, − ̄

= Var( X̄) + (−1)2Var( Ȳ ) + 0 
σ2 σ2 
1 2 = + . 

n1 n2 

From the CLT we know that Z is approximately N(0, 1) where: 

X̄ − Ȳ − (µ1 − µ2)
Z =  . 

σ1
2/n1 + σ2/n22
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This means we can do an α-level z-test for comparing the means using the 
test statistic: 

x̄− ȳ − δ0 
z = ,

2 2s /n1 + s /n21 2

where remember that for large samples s1 ≈ σ1 and s2 ≈ σ2. 

To summarize, the statistic above is for conducting a 2-sample indepen
dent samples design z-test where both samples are large, and the goal is to 
compare the means. That’s the basic idea, and the front page of your book 
has the summary written out for you to carry out the test. Basically if z is 
too big or too small, you’ll reject H0. 

Example 1
 

2) Independent Samples Design for Small Samples (n1, n2 ≤ 30): 

We could create a z-test using rv Z if the populations are normal and if 
we know the population variances. But in most cases, we don’t know this. 
In that case, we can’t use the z-test since we have no variances and we also 
can’t use the CLT to claim that Z defined above is approximately N(0, 1). 
We’ll have to assume the populations are normal and use the t-test. 

Sample 1: x1, . . . , xn1 ∼ N(µ1, σ1
2) where µ1 and σ2 are unknown. 1 

Sample 2: y1, . . . , yn2 ∼ N(µ2, σ2
2) where µ2 and σ2 are unknown. 2 

Case 2a: σ2 = σ2
2 . (You have to know this somehow ahead of time to 1 

use this test. Or you can check this assumption using an F-test that I’ll show
 
you in Chapter 8.4. It is also assumed that you don’t necessarily know σ1 or
 
σ2 in advance.)
 
Let σ2 := σ2 = σ2

2 . We are testing:
 1 

H0 : µ1 − µ2 = δ0
 

H1 : µ1 − µ2 = δ0
 

I need to do some calculations to derive the test statistic. We need to know 
that: 

E(X̄ − Ȳ ) = µ1 − µ2. 
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It’s going to be a kind of t-test, so I’ll need an estimator for the variance. 
2 2To estimate the variance we could use either s or s but instead we use a 1 2 

combination so we get a better estimator:   
(xi − x̄)2 + (yi − ȳ)2 

s 2 = i i = “pooled variance.” 
(n1 − 1) + (n2 − 1) 

It turns out (with some work required) that the following rv T has a t-
distribution with d.f. (n1 − 1) + (n2 − 1) which equals n1 + n2 − 2: 

X̄ − Ȳ − (µ1 − µ0)
T =  . 

s 1 + 1 
n1 n2 

We can use the test statistic: 

x̄− ȳ − δ0 
t =  

s 1 + 1 
n1 n2 

(where s is the square root of the pooled variance above) for a 2 sample t-test 
to compare the means for an independent samples design experiment where 
the samples have equal variance, d.f. n1 + n2 − 2. 

Example 2
 

Case 2b: σ2 = σ2 and you don’t know either of them. In this case, it is 1 2 

tempting to use the distribution of: 

X̄ − Ȳ − (µ1 − µ2)
T =  ,

2 2s s1 + 2 
n1 n2 

but T does not have a t-distribution. However, its distribution can be ap
proximated by the t-distribution with d.f. ν where ν is computed according 
to the “Welch-Satterthwaite method:  

2 2 
 2 

s s1 + 2 
n1 n2

ν = - -2 - -2 ,2 2s s1 2 
n1 n2 

+ n1−1 n2−1 
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where fractions are truncated to the nearest integer.
 
So to test: 

H0 

H1 

: 

: 

µ1 − µ2 = δ0 

µ1 − µ2 = δ0, 

compute test statistic: 
x̄ − ȳ − δ0 

t = 
s s
n1 n2 

and comparing to tν,α/2 (2-sided) or tν,α (1-sided) gives the approximate solu
tion, using ν computed according to the Welch-S method. We can certainly 

2
2 

also compute pvalues and confidence intervals, which are provided in the ta
ble in the front of the book. 

2
1 

The Welch-S method really makes a difference when: 

1. s1	 and s2 are very different 

2. n1	 and n2 are very different. 

3) Matched Pairs Design: 

Given n pairs:
 

pair: 1, 2, . . . , n
 

Sample 1: x1, x2, . . . , xn
 

Sample 2: y1, y2, . . . , yn
 

Assume Xi ∼ N(µ1, σ1
2) and Yi ∼ N(µ2, σ2

2) but Xi and Yi are not indepen
dent, they are correlated. The pairs themselves are mutually independent 
(e.g. patients’ temp before taking tylenol, patients’ temp after tylenol). Let 
ρ := corr(Xi, Yi) (it’s the same for all i). 

Define Di = Xi − Yi. It turns out that the Di’s are independent normal 
rv’s with: 

µD	 = E(Di) = E(Xi − Yi) 
2σD	 = Var(Di) = Var(Xi − Yi) = Var(Xi) + Var(−Yi) − 2Cov(Xi, Yi) 

= σ1
2 + (−1)2σ2

2 − 2ρσ1σ2. 

+
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Since ρ > 0 when the pairs are matched, the variance we computed is smaller 
than that of the independent samples case. 

Now we can actually reduce the whole thing to the single sample setting. 
Let di = xi − yi. To test: 

H0 : µD = δ0
 

H1 : µD = δ0,
 

1¯We assume D1, . . . , Dn ∼ N(µD, σ
2 ). We calculated d = di and we also D n i 

1calculated sd = (di − d̄)2 . The test statistic is just: n−1 i

x̄− ȳ − δ0 
t = √ , 

sd/ n 

and we perform a t-test (this is called a “paired” t-test). 

• Reject H0 when |t| > tn−1,α2 

• Reject H0 when pvalue= 2P (Tn−1 ≥ |t|) < α 

¯ √sd ¯ √sd• Reject H0 when δ /∈ CI, where CI is δ ∈ d − tn−1,α/2 , d + tn−1,α/2 . 
n n 

We can adapt the power and sample size determinations from Chapter 7 even 
though the variables aren’t normal to get approximate values. Pinning down 
H1 : µD = δ1, 

δ1 δ1
π(δ1) ≈ Φ −zα/2 + √ + Φ −zα/2 − √ . 

σD/ n σD/ n 

The following sample size calculation gives the sample size needed for a 
matched pairs test with α-risk α and power 1 − β to detect a difference 
in means of δ1:   2(zα/2 + zβ)σD 

n =
δ1

(you can replace σD by sd if the sample size is large enough in both of these 
formulas). 
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8.4 Comparing the Variances of 2 Populations: 

The F-test for independent samples design (heavily requires normality) 
compares the variance of two populations where we have samples: 

Sample 1: x1, . . . , xn1 ∼ N(µ1, σ1
2) 

Sample 2: y1, . . . , yn2 ∼ N(µ2, σ2
2) 

To compare the population variances, we consider σ1
2/σ2

2 , estimated by 
2s1/s

2
2. We learned in Chapter 5 that the rv below has an F-distribution with 

d.f.’s n1 − 1 and n2 − 1: 
S1
2/σ2 

1F = . 
S2/σ2 
2 2 

So if we want to test: 

σ2 = σ2H0 : 21 

σ2: = σ2H1 1 2 

we compute the test statistic 
2s1F = 2s2 

and since the upper and lower α/2 critical points of the F-distribution are 
fn1−1,n2−1,1−α/2 and fn1−1,n2−1,α/2, then we: 

•	 reject H0 when F < fn1−1,n2−1,1−α/2 or F > fn1−1,n2−1,α/2. 

•	 reject H0 when P (F < fn1−1,n2−1,1−α/2) < α/2 or P (F > fn1−1,n2−1,α/2) > 
α/2. 

•	 reject H0 when F /∈ CI. 

Let’s derive the CI: 
2s1/σ

2 
1fn1−1,n2−1,1−α/2 ≤ ≤ fn1−1,n2−1,α/2.2s /σ2 

2 2 

We need to solve for σ1
2/σ2

2 . Just rewriting to make the notation simpler, 

2s1/σ
2 
1f− ≤ 2 ≤ f+. 

s /σ2 
2 2 
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1
Let’s do the left equation first. Solving for the ratio σ
2 

,
σ2 
2
 

2
1
 

2
2
σ
s

f− ≤ 
s
22
 

2
1
σ


2
1
 

2
1
σ
 1
s
≤
 .
2

2
 
2
2
σ
 f−s


Then for the right equation, we’ll have:
 

2
1
 

2
1
σ
 1
s
≥
 .
2

2
 
2
2
σ
 f+s


Putting it together:
 

So we’ll reject H0 when: 

2
1
 

2
1
 

2
1
1
 σ
 1
s
 s
≤
 ≤
 .
2

2
 
2
2
 

2
2
f+ σ
 f−s
 s


2
1
 

2
1
1
 1
s
 s


1 ∈/
 ,
 .
2
2
 

2
2
fn1−1,n2−1,α/2 fn1−1,n2−1,1−α/2s
 s


(The 1-sided tests can be derived similarly).
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