Chapter 9 Notes, Part 1 - Inference for Proportion and Count Data

We want to estimate the proportion p of a population that have a specific attribute, like "what percent of houses in Cambridge have a mouse in the house?"

We are given X_{1}, \ldots, X_{p} where X_{i} 's are Bernoulli, and $P\left(X_{i}=1\right)=p$.
X_{i} is 1 if house i has a mouse.
Let $Y=\sum_{i} X_{i}$ so $Y \sim \operatorname{Bin}(n, p)$.
An estimator for p is:

$$
\hat{p}=\frac{Y}{n}=\frac{1}{n} \sum_{i} X_{i}
$$

\hat{p} is a random variable. For large n (rule of thumb, $n \hat{p} \geq 10, n(1-\hat{p}) \geq 10$) the CLT says that approximately:

$$
\hat{p} \sim N\left(p, \frac{p q}{n}\right) \text { where } q=1-p
$$

Questions: What's up with that rule of thumb? Where did the $p q / n$ come from?

Confidence Intervals

The CI can be computed in 2 ways (here for 2 -sided case):

- CI first try:

$$
P\left(-z_{\alpha / 2} \leq \frac{\hat{p}-p}{\sqrt{p q / n}} \leq z_{\alpha / 2}\right)=1-\alpha .
$$

We could solve it for p but the expression is quite large...

- CI second try:

$$
P\left(-z_{\alpha / 2} \leq \frac{\hat{p}-p}{\sqrt{\hat{p} \hat{q} / n}} \leq z_{\alpha / 2}\right) \approx 1-\alpha
$$

which yields

$$
\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \leq p \leq \hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} .
$$

So that's the approximate CI for p.

Sample size calculation for CI

Want a CI of width $2 E$:

$$
\hat{p}-E \leq p \leq \hat{p}+E
$$

so

$$
E=z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \text { which means } n=\left(\frac{z_{\alpha / 2}}{E}\right)^{2} \hat{p} \hat{q} .
$$

Question: We'll take $\hat{p} \hat{q}$ to be its largest possible value, $(1 / 2) \times(1 / 2)$. Why do we do this? Why don't we just use the \hat{p} and \hat{q} that we measure from the data?

So, we need:

$$
n=\left(\frac{z_{\alpha / 2}}{E}\right)^{2} \frac{1}{4} \text { observations. }
$$

Hypothesis testing on proportion for large n

$$
\begin{aligned}
& H_{0}: p=p_{0} \\
& H_{1}:
\end{aligned}: p \neq p_{0} .
$$

Large n and H_{0} imply $\hat{p} \approx N\left(p_{0}, \frac{p_{0} q_{0}}{n}\right)$ (where $\left.q_{0}=1-p_{0}\right)$ so we use z-test with test statistic:

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0} q_{0} / n}}
$$

Example

For small n one can use the binomial distribution to compute probabilities directly (rather than approximating by normal). (Not covered here.)

Chapter 9.2 Comparing 2 proportions

Example: The Salk polio vaccine trial: compare rate of polio in control and treatment (vaccinated) group. Is this independent samples design or matched pairs?

Sample 1: number of successes $X \sim \operatorname{Bin}\left(n_{1}, p_{1}\right)$, observe $X=x$.
Sample 2: number of successes $Y \sim \operatorname{Bin}\left(n_{2}, p_{2}\right)$, observe $Y=y$.
We could compare rates in several ways:

$$
\begin{array}{cl}
p_{1}-p_{2} & \rightarrow \text { we'll use this one } \\
p_{1} / p_{2} & \text { "relative risk" } \\
\left(\frac{p_{1}}{1-p_{1}}\right) /\left(\frac{p_{2}}{1-p_{2}}\right) & \text { "odds ratio" }
\end{array}
$$

For large samples, we'll use the CLT:

$$
Z=\frac{\hat{p}_{1}-\hat{p}_{2}-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}} \approx N(0,1)
$$

where $\hat{p_{1}}=X / n_{1}$ and $\hat{p}_{2}=Y / n_{2}$.
To test

$$
\begin{aligned}
& H_{0}: p_{1}-p_{2}=\delta_{0}, \\
& H_{1}: p_{1}-p_{2}=\delta_{0},
\end{aligned}
$$

we can just compute zscores, pvalues, and CI. The test statistic is:

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}-\delta_{0}}{\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}} .
$$

This is a little weird because it really should have terms like " $p_{1,0} q_{1,0} / n_{1}$ " in the denominator, but we don't have those values under the null hypothesis. So we get an approximation by using \hat{p}_{1} and \hat{q}_{1} in the denominator.

Example

For an independent samples design with small samples, use Fisher's Exact Test which uses the Hypergeometric distribution. For a matched pairs design, use McNemar's Test which uses the binomial distribution (Both beyond the scope.)

```
Two Challenges
```

MIT OpenCourseWare
http://ocw.mit.edu

15.075J / ESD.07J Statistical Thinking and Data Analysis

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

