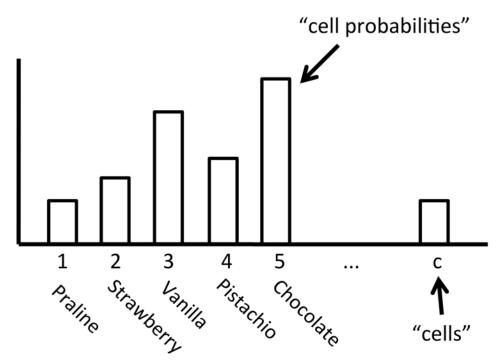
Chapter 9 Notes, 9.3 First Part Inference for One Way Count Data Chi-Square Test using the Multinomial Distribution

An example of the multinomial distribution: preference of ice cream flavors:



- Cells are numbered $1, \ldots, c$
- Cell probabilities are p_1, \ldots, p_c where $\sum_i p_i = 1$
- Cell counts are n_1, \ldots, n_c where $\sum_i n_i = n$
- Count r.v.'s N_1, \ldots, N_c where $\sum_i N_i = n$.
- Multinomial distribution

$$P(N_1 = n_1, N_2 = n_2, \ldots) = \frac{n!}{n_1! n_2! \cdots n_c!} p_1^{n_1} p_2^{n_2} \cdots p^{n_c}.$$

We want to test:

$$H_0$$
: $p_1 = p_{10}, p_2 = p_{20}, \cdots, p_c = p_{c0}$
 H_1 : at least one $p_i \neq p_{i0}$

Example: a market survey of detergents

 p_{i0} are past market shares

 p_i are current market shares

 $n_1, n_2, \cdots n_c$ are cell counts in the sample of the current market.

Want to test whether current shares are different from the past.

Construct test statistic χ^2 as follows:

$$e_i = np_{i0} \leftarrow \text{expected cell counts when } H_0 \text{ is true.}$$

 $\chi^2 = \sum_{i=1}^c \frac{(n_i - e_i)^2}{e_i} = \sum_i \frac{(\text{observed}_i - \text{expected}_i)^2}{\text{expected}_i}$

Think of χ^2 as a discrepancy of how different the observed counts are from the expected counts.

So you want χ^2 to be small. If it's too large, it means that the observed are different from the expected. If that happens, it means something has gone wrong, namely your assumption that H_0 is true. This means we'll reject H_0 if χ^2 is too large.

It is possible to show that as $n \to \infty$, χ^2 has a chi-square distribution with d.f. c-1. (Note: We lost a d.f. since $p_i = 1$.) So, H_0 can be rejected at level α if $\chi^2 > \chi^2_{c-1,\alpha}$.

Example: Mendel's genetic experiments

The χ^2 we introduced is a *Pearson chi-square* statistic:

$$\chi^2 = \sum \frac{(n_i - e_i)^2}{e_i} = \sum_i \frac{(\text{observed}_i - \text{expected}_i)^2}{\text{expected}_i}.$$

Remember, this only approximately has a chi-square distribution when n is large:

 $e_i \geq 1$ and more than $4/5^{\text{th}}$ s of e_i 's are ≥ 5 . \leftarrow Important

15.075J / ESD.07J Statistical Thinking and Data Analysis Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.