Chapter 9 Notes, 9.4 Inferences for Two Way Count Data

Let's say we want to test the association of income to job satisfaction. We could do a survey in at least 2 ways:

Sampling Model 1 (n fixed): Draw n people randomly from the population and ask their income and how satisfied they are with their job.

	very dissatisfied	dissatisfied	satisfied	very satisfied	row total
$<\$ 6000$	20	24			206
$\$ 6 \mathrm{~K}-15 \mathrm{~K}$	22	60			
$\$ 15-25 \mathrm{~K}$	13	5			
$>\$ 25 \mathrm{~K}$	7	19			
column total	62	108			901

Here $n=901$.

Sampling Model 2 (Row totals fixed): Fix $n_{1}, n_{2}, n_{3,}, \ldots$ which are going to be row totals. Draw n_{1}. people that make $<\$ 6000$, draw n_{2}. people that make between $\$ 6000$ and $\$ 15000$, etc., randomly from the population and ask how satisfied they are with their job.

	very dissatisfied	dissatisfied	satisfied	very satisfied	row total
$<\$ 6000$	35				n_{1}.
$\$ 6 \mathrm{~K}-15 \mathrm{~K}$	20				n_{2}.
$\$ 15-25 \mathrm{~K}$	$:$				$n_{3 .}$
$>\$ 25 \mathrm{~K}$					
column total					n

Notation for both models:
columns

First index is row, second index is column.

Let $X=$ row variable (income), and $Y=$ column variable (satisfaction level).

For sampling model 1 we want to test whether X and Y are statistically independent, that is, H_{0} is the "hypothesis of independence."

$$
\begin{aligned}
& H_{0}: P(X=i, Y=j)=P(X=i) P(Y=j) \text { for all } i, j . \\
& H_{1}: \quad P(X=i, Y=j) \neq P(X=i) P(Y=j) \text { for some } i, j .
\end{aligned}
$$

Model 1 Notation:

$$
\begin{aligned}
& p_{i j}=P(X=i, Y=j)=\text { prob. to land in } i j^{\text {th }} \text { entry } \\
& p_{i, \cdot}=P(X=i)=\text { prob. to land in } i^{\text {th }} \text { row } \\
& p_{\cdot, j}=P(Y=j)=\text { prob. to land in } j^{\text {th }} \text { column }
\end{aligned}
$$

Here's the formula for χ^{2} :

$$
\chi^{2}=\sum_{i j} \frac{\left(n_{i j}-\hat{e}_{i j}\right)^{2}}{\hat{e}_{i j}}
$$

To calculate χ^{2} we need the $\hat{e}_{i j}$'s:

$$
\begin{aligned}
\hat{e}_{i j} & =\text { expected chunk of sample landing in } i j^{\text {th }} \text { bin } \\
& =n P(X=i, Y=j) \\
& =n P(X=i) P(Y=j) \text { (where did this come from?) } \\
& \approx n \frac{n_{i} \cdot \frac{n_{\cdot j}}{n}}{n}=\frac{n_{i} \cdot n \cdot j}{n} .
\end{aligned}
$$

In the last line we used data to estimate the probabilities.
Is this a little weird? We used data for both the $\hat{e}_{i j}$'s and the $n_{i j}$'s.
The d.f. turns out to be $d f=(r-1)(c-1)$.
So an α-level test rejects H_{0} when $\chi^{2}>\chi_{(r-1)(c-1), \alpha}^{2}$.

For sampling model 2, we want to test whether $P(Y \mid X)$ is independent of X.
Why can't we show $P(X=i, Y=k)=P(X=i) P(Y=j)$?
So we'll use:

$$
\begin{array}{ll}
H_{0} & : P(Y=j \mid X=i)=P(Y=j) \text { for all } i, j \\
H_{1} & : P(Y=j \mid X=i)=P(Y=j) \text { for some } i \text { and } j .
\end{array}
$$

Model 2 notation:

$$
\begin{aligned}
p_{i j} & =P(Y=j \mid X=i) \\
p_{j} & =P(Y=j) .
\end{aligned}
$$

(There's a good reason I'm using the same notation $p_{i j}$ to mean something different in Model 2.)

In Model 2, the null hypothesis is the "hypothesis of homogeneity":

$$
\begin{aligned}
& H_{0}:\left(p_{i 1}, p_{i 2}, \ldots, p_{i c}\right)=\left(p_{1}, p_{2}, p_{3}, \ldots, p_{c}\right) \text { for all } i \\
& H_{1}:\left(p_{i 1}, p_{i 2}, \ldots, p_{i c}\right)=\left(p_{1}, p_{2}, p_{3}, \ldots, p_{c}\right) \text { for some } i
\end{aligned}
$$

To calculate χ^{2}, again we need $\hat{e}_{i j}$'s:

$$
\begin{aligned}
\hat{e}_{i j} & =\text { expected chunk of } i^{\text {th }} \text { sample landing in } j^{\text {th }} \text { bin } \\
& =n_{i} \cdot P(Y=j \mid X=i) \\
& =n_{i} \cdot P(Y=j) \text { (where did this come from?) } \\
& \approx n_{i} \cdot \frac{n_{\cdot j}}{n}=\frac{n_{i} \cdot n_{\cdot j}}{n} .
\end{aligned}
$$

And now, the formula for the $\hat{e}_{i j}$'s is the same as for Model 1. So again, reject when:

$$
\chi^{2}=\sum_{i j} \frac{\left(n_{i j}-\hat{e}_{i j}\right)^{2}}{\hat{e}_{i j}}>\chi_{(r-1)(c-1), \alpha}^{2} .
$$

Example

MIT OpenCourseWare
http://ocw.mit.edu

15.075J / ESD.07J Statistical Thinking and Data Analysis

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

