Chapter 11 : Multiple Linear Regression

We have:

	height	weight	\ldots	age	amount of lemonade purchased
person 1:	x_{11}	x_{12}	\ldots	$x_{1 k}$	y_{1}
person 2:	x_{21}	x_{22}	\ldots	$x_{2 k}$	y_{2}
:					

where we assume

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}+\epsilon_{i}
$$

for $i=1, \ldots, n$ and $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$. The x_{i}.'s are not random.
Is there any way we can fit something that isn't linear? Like a polynomial?
We can do least squares to find $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$: Minimize Q where:

$$
Q=\sum_{i}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}\right)\right)^{2}
$$

Solve it the same way as we did in Chapter 10: set $\partial Q / \partial \beta_{j}=0$ for all j. In this case, we'll let the computer solve it for us. So now we have all the $\hat{\beta}_{j}$'s.

To assess the goodness of fit, again define:

$$
\mathrm{SSE}=\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2} \text { where } \hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\hat{\beta}_{2} x_{i 2}+\cdots+\hat{\beta}_{k} x_{i k}
$$

and compare with:

$$
\mathrm{SST}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2} .
$$

Again, SSR $=$ SST- SSE.
The coefficient of "multiple" determination is :

$$
\begin{equation*}
r^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \tag{1}
\end{equation*}
$$

This time, by convention,

$$
r=+\sqrt{1-\frac{\mathrm{SSE}}{\mathrm{SST}}} .
$$

The square root is only positive, since it is not meaningful to assign an association between y and multiple x 's.

For hypothesis testing, we'll need to know:

1. Each of the coefficients obeys:

$$
\hat{\beta}_{j} \sim N\left(\beta_{j}, \sigma^{2} V_{j j}\right)
$$

where $V_{j j}$ is the j'th diagonal entry of $V=\left(X^{\prime} X\right)^{-1}, j=0,1, \cdots, k$
2. Because we don't know σ^{2}, we use

$$
S E\left(\hat{\beta}_{j}\right)=s \sqrt{V_{j j}}
$$

where $s^{2}=\frac{S S E}{n-(k+1)}$
We could do the hypothesis tests on each β_{j} :

$$
\begin{aligned}
& H_{0 j}: \beta_{j}=\beta_{j}^{0} \\
& H_{1 j}: \beta_{j} \neq \beta_{j}^{0} .
\end{aligned}
$$

Reject $H_{0 j}$ when

$$
\left|t_{j}\right|=\frac{\left|\hat{\beta}_{j}-\beta_{j}^{0}\right|}{S E\left(\hat{\beta}_{j}\right)}>t_{n-(k+1), \alpha / 2}
$$

and thus if $\beta_{j}^{0}=0$:

$$
\begin{aligned}
& H_{0 j}: \beta_{j}=0 \\
& H_{1 j}: \beta_{j} \neq 0 .
\end{aligned}
$$

Reject $H_{0 j}$ when

$$
\left|t_{j}\right|=\frac{\left|\hat{\beta}_{j}\right|}{S E\left(\hat{\beta}_{j}\right)}>t_{n-(k+1), \alpha / 2}
$$

Or we could test all β_{j} 's simultaneously:

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0 \\
& H_{1}: \beta_{i}=0 \text { for at least one } i .
\end{aligned}
$$

Reject H_{0} when $F>f_{k, n-(k+1), \alpha}$ where:

$$
F=\frac{M S R}{M S E}=\frac{\frac{S S R}{k}}{\frac{S S E}{n-(k+1)}}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{k} .
$$

Both the numerator and the denominator look like sample variances so you could see the intuition why $\frac{M S R}{M S E}$ has an F-distribution.

Equivalently:

$$
F=\frac{M S R}{M S E}=\frac{\frac{S S R}{k}}{\frac{S S E}{n-(k+1)}} \stackrel{(?)}{=} \frac{\frac{r^{2} S S T}{k}}{\frac{\left(1-r^{2}\right) S S T}{n-(k+1)}}=\frac{r^{2}(n-k-1)}{k\left(1-r^{2}\right)}
$$

Where did the (?) step come from?
Note: The F-test above does not tell you which β_{j} s are nonzero.
But then how do you do that?
Note: Beware of multicollinearity, meaning that some of the factors in the model can be determined from the others (i.e. they are linearly dependent).

Example: for savings, income, expenditure where
savings = income - expenditure.

This makes computation numerically unstable and $\hat{\beta}_{j}$ are not statistically significant. To avoid this, use only income and expenditure, not savings. (Or savings and income, not expenditure, etc.)

Corresponding ANOVA regression table

Source of variation	sum of squares	d.f.	Mean Square	F	p
Regression	SSR	k	$\mathrm{MSR}=\frac{\mathrm{SSR}}{k}$	$F=\frac{\mathrm{MSR}}{\mathrm{MSE}}$	p -value
Error	SSE	$n-(k+1)$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{n-(k+1)}$		
Total	SST	$n-1$			

We can also put the hypothesis tests for the individual β_{j} 's in a table:

$$
\begin{array}{cccc}
\text { predictor } & \mathrm{SE} & \mathrm{t} \text {-statistic } & \mathrm{p} \text {-value } \\
\hline \hat{\beta}_{0} & S E\left(\hat{\beta_{0}}\right) & t=\frac{\hat{\beta_{0}}}{S E\left(\hat{\beta_{0}}\right)} & \mathrm{p} \text {-value } \\
\hat{\beta_{1}} & S E\left(\hat{\beta_{1}}\right) & t=\frac{\hat{\beta_{1}}}{S E\left(\hat{\beta_{1}}\right)} & \mathrm{p} \text {-value } \\
\vdots & \vdots & \vdots & \vdots \\
\hat{\beta_{k}} & S E\left(\hat{\beta_{k}}\right) & t=\frac{\hat{\beta}_{k}}{S E\left(\hat{\beta_{k}}\right)} & \mathrm{p} \text {-value }
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

15.075J / ESD.07J Statistical Thinking and Data Analysis

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

