Chapter 14 Nonparametric Statistics

A.K.A. "distribution-free" statistics! Does not depend on the population fitting any particular type of distribution (e.g, normal). Since these methods make fewer assumptions, they apply more broadly... at the expense of a less powerful test (needing more observations to draw a conclusion with the same certainty).

Let's think about the median $\tilde{\mu}$. Given a sample x_{1}, \ldots, x_{n} drawn randomly from an unknown continuous distribution, say we want to test:

$$
\begin{aligned}
& H_{0}: \tilde{\mu}=\tilde{\mu}_{0} \\
& H_{1}: \tilde{\mu}>\tilde{\mu}_{0}
\end{aligned}
$$

For example, test whether the median household income exceeds 25 K .

Sign Test

Step 1 Count the number of x_{i} 's that exceed $\tilde{\mu}_{0}$. Call this s_{+}. Let $s_{-}=n=s_{+}$. Step 2 Reject H_{0} if s_{+}is too large (or if s_{-}is too small).

Why does this make sense? What if the true median $\tilde{\mu}$ is 1000 and $\tilde{\mu}_{0}$ is 1 ?

How large should s_{+}be in order to reject? To find out, we need to know the distribution of the r.v. for s_{+}. Call that r.v. S_{+}.

Let

$$
p=P\left(X_{i}>\tilde{\mu}_{0}\right) \text { and } 1-p=P\left(X_{i}<\tilde{\mu}_{0}\right) .
$$

Here's a helpful picture. Note that the distribution of the population isn't normal!

If you think of:

$$
Y_{i}=\left\{\begin{array}{l}
1 \text { if } X_{i}>\tilde{\mu}_{0} \\
0 \text { otherwise }
\end{array}\right.
$$

as a Bernoulli r.v. with parameter p, then S_{+}is a sum of the Y_{i} 's. So S_{+}is a sum of Bernoulli's. So it's binomial!

$$
\begin{equation*}
S_{+} \sim \operatorname{Bin}(n, p) \text { and } S_{-} \sim \operatorname{Bin}(n, 1-p) \tag{1}
\end{equation*}
$$

Now, if H_{0} is true, $\tilde{\mu}_{0}$ is the true median and $p=1 / 2$, so:

$$
\begin{equation*}
S_{+} \sim \operatorname{Bin}(n, 1 / 2) \text { and } S_{-} \sim \operatorname{Bin}(n, 1 / 2) \tag{2}
\end{equation*}
$$

So reject when $s_{+} \geq b_{n, \alpha}$, where $b_{n, \alpha}$ is the upper α critical point for $\operatorname{Bin}(n, 1 / 2)$.

That is, $\alpha=\sum_{i=b_{n, \alpha}}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n}$.
(Or reject when $s_{-} \leq b_{n, 1-\alpha}$.)
Let's calculate the pvalue using the binomial distribution:

$$
\begin{aligned}
& \text { pvalue }=P\left(S_{+} \geq s_{+}\right)=\sum_{i=s_{+}}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n} \\
& \stackrel{(*)}{=} P\left(S_{-} \leq s_{-}\right)=\sum_{i=0}^{s_{-}}\binom{n}{i}\left(\frac{1}{2}\right)^{n} .
\end{aligned}
$$

The step with the $\left(^{*}\right)$ is from symmetry of $\operatorname{Bin}(n, 1 / 2)$.
As usual, reject if pvalue $<\alpha$.
(Also if n is large, the binomial distribution can be replaced with the normal distribution and we could use a z-test.)

Example
Can you see now why we needed the assumption of a continuous r.v.?
(Think about p under the null hypothesis.)
Also we could rewrite the hypotheses:

$$
\begin{aligned}
H_{0} & : p=1 / 2 \\
H_{1} & : p>1 / 2 .
\end{aligned}
$$

Summary of Sign Test:

 assumptions!

Test Statistic: $S_{+}=$number of observations X_{i} that exceed $\tilde{\mu}_{0}\left(\right.$ or $s_{-}=n-s_{+}$).

Hypotheses	Reject when	pvalue
$H_{0}: \tilde{\mu} \leq \tilde{\mu}_{0}$	$s_{+} \geq b_{n, \alpha}$	$P\left(S_{+} \geq s_{+}\right)=\sum_{i=s_{+}}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n}$
$H_{1}: \tilde{\mu}>\tilde{\mu}_{0}$		$P\left(S_{-} \geq s_{-}\right)=\sum_{i=s_{-}}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n}$
$H_{0}: \tilde{\mu} \geq \tilde{\mu}_{0}$	$s_{-} \geq b_{n, \alpha}$	
$H_{1}: \tilde{\mu}<\tilde{\mu}_{0}$		$2 \sum_{i=s_{\max }}^{n}\binom{n}{i}\left(\frac{1}{2}\right)^{n}$
$H_{0}: \tilde{\mu}=\tilde{\mu}_{0}$	$s_{\max } \geq b_{n, \alpha}$	
$H_{1}: \tilde{\mu} \neq \tilde{\mu}_{0}$	where $s_{\max }:=\max \left(s_{+}, s_{-}\right)$	

Wilcoxon Signed Rank Test

Let us add an assumption in order to gain more power from the test. Namely, the assumption that the distribution is symmetric.

Symmetric means that reflection around the median yields the same thing. (The sign test did not require this... remember, generally more assumptions means more conclusions.)

The Wilcoxon Signed Rank Test looks at magnitudes

$$
d_{i}=X_{i}-\tilde{\mu}_{0} .
$$

Also assume no ties: $d_{i}=0$ for any i, and no absolute ties $\left|d_{j}\right|=\left|d_{j}\right|$ for any i, j.

$$
\begin{aligned}
& H_{0}: \tilde{\mu}=\tilde{\mu}_{0} \\
& H_{1}: \tilde{\mu}>\tilde{\mu}_{0} .
\end{aligned}
$$

Step 1 Rank the $\left|d_{i}\right|$'s. Let r_{i} be the rank of $\left|d_{i}\right|$. Here, $r_{i}=1$ for the smallest $\left|d_{i}\right|$.

Step 2 Let

$$
\begin{aligned}
w_{+} & =\text {sum of ranks of the positive } d_{i} \text { 's } \\
w_{-} & =\text {sum of ranks of the negative } d_{i} \text { 's. } \\
\left(\text { So, } w_{+}+w_{-}=\right. & \left.r_{1}+r_{2}+\cdots+r_{n}=1+2+\cdots+n=\frac{n(n+1)}{2} .\right)
\end{aligned}
$$

Step 3 Reject H_{0} if w_{+}is too large (or if w_{-}is to small.)

Example

How large to reject? Our r.v. is W_{+}which is a sum of ranks. We've never seen W_{+}'s distribution before, but tail probabilities for it are in Appendix A10 on page 683.

As an aside: To make the distribution of W_{+}, take all 2^{n} possible assignments of signs to the ranks of $\left|d_{i}\right|$'s:

$$
\begin{aligned}
i & =1
\end{aligned} 2 \begin{array}{lllll}
3 & 4 & \cdots & n \\
\text { possible assignments } & =2 \times 2 \times 2 \times 2 & \cdots & 2
\end{array}=2^{n}
$$

(Each assignment gets $\mathrm{a}+$ or - so there are 2 possibilities of signs for each rank.) For each assignment, calculate w_{+}. Since assignments are equally likely, we get a distribution over w_{+}values.

It can be shown that W_{+}and W_{-}have the same distribution. So call $W=W_{+}=$ W_{-}. Then we can use the table to get the pvalues:

$$
\text { pvalue }=P\left(W \geq w_{+}\right)=P\left(W \leq w_{-}\right)
$$

Reject H_{0} if pvalue $\leq \alpha$ or if $w_{+} \geq w_{n, \alpha}$.
(For large n, can approximate null distribution of W by a normal distribution.)

Summary of Wilcoxon Signed Rank Test:

Data \& Assumptions: $X_{1}, \ldots, X_{n} \sim$ unknown symmetric distribution

Test Statistic: $w_{+}=$sum of ranks of positive d_{i} 's where $d_{i}=x_{i}-\tilde{\mu}_{0}$.

Hypotheses	Reject when	pvalue
$H_{0}: \tilde{\mu} \leq \tilde{\mu}_{0}$	$w_{+} \geq w_{n, \alpha}$	$P\left(W \geq w_{+}\right)$
$H_{1}: \tilde{\mu}>\tilde{\mu}_{0}$		$P\left(W \geq w_{-}\right)$
$H_{0}: \tilde{\mu} \geq \tilde{\mu}_{0}$	$w_{-} \geq w_{n, \alpha}$	
$H_{1}: \tilde{\mu}<\tilde{\mu}_{0}$		$2 P\left(W \geq w_{\max }\right)$
$H_{0}: \tilde{\mu}=\tilde{\mu}_{0}$	$w_{\max }=\max \left(w_{+}, w_{-}\right) \geq w_{n, \alpha}$	$2 P$
$H_{1}: \tilde{\mu}=\tilde{\mu}_{0}$		

Example continued
Why do we need the assumption of a symmetric distribution?

Important ${ }^{* * * *}$ There are many cases in which H_{0} is rejected by the Wilcoxon Signed Rank Test but not the Sign Test

Inferences for Two Independent Samples (Rank Sum Test and Mann-Whitney U Test

We want to know whether observations from one population (given sample $x_{1}, \ldots, x_{n_{1}}$) tend to be larger than those from another population (given $y_{1}, \ldots, y_{n_{2}}$).

Mouse Data Example

Let's make precise X "larger than" Y.

Given r.v.'s X and Y with cdf's F_{1} and F_{2},

X is stochastically larger than Y (denoted $X \succ Y$) if for all real numbers u,

$$
F_{1}(u) \leq F_{2}(u),
$$

in other words $P(X \leq u) \leq P(Y \leq u)$,
with strict inequality for at least one u. Denote $F_{1}<F_{2}$ to mean $X \succ Y$.
Let us test:

$$
\begin{aligned}
H_{0} & : F_{1}=F_{2} \\
H_{1} & : F_{1}<F_{2}
\end{aligned}
$$

Wilcoxon-Mann-Whitney U Test and Wilcoxon Rank Sum Test equivalent tests)

Wilcoxon Rank Sum
Step 1 Rank all $N=n_{1}+n_{2}$ observations in ascending order (assume no ties)
Step 2 Sum the ranks of the $x^{\prime} s$ and $y^{\prime} s$ separately. Denote sums by w_{1} and w_{2}.
Step 3 Reject H_{0} if w_{1} is large (or equivalently if w_{2} is small).

Example

To do testing, we need the distribution of W_{1} (the random variable for w_{1}) or W_{2} under H_{0} (soon).

Mann-Whitney U
Step 1 Compare each x_{i} with each y_{j}
Step 2 Let u_{1} be the number of pairs in which $x_{i}>y_{j}$. Let u_{2} be the number of pairs in which $x_{i}<y_{j}$.

Step 3 Reject H_{0} if u_{1} is large (or equivalently if u_{2} is small).
It is true that

$$
u_{1}=w_{1}-\frac{n_{1}\left(n_{1}+1\right)}{2} \text { and } u_{2}=w_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2} .
$$

Demo of this fact

Since u_{1} and w_{1} are just a constant apart, the distributions of u_{1} (r.v. U_{1}) and w_{1} (r.v. W_{1}) have the same shape:

The distribution of U_{1} turns out to be symmetric about $\left(n_{1} n_{2}\right) / 2$ and in fact, U_{2} has the same distribution as U_{1}. Tail probabilities for this distribution are in Table A.11. So we define $U:=U_{1}=U_{2}$.

So given $x_{1}, \ldots, x_{n_{1}}, y_{1}, \ldots, y_{n_{2}}$, to test:

$$
\begin{array}{lll}
H_{0} & : & F_{1}=F_{2} \\
H_{1} & : & F_{1}<F_{2}
\end{array}
$$

Steps 1 and 2 Compute $u_{1}=$ number of pairs in which $x_{i}>y_{i}$.

$$
\text { or } u_{1}=w_{1}-\frac{n_{1}\left(n_{1}+1\right)}{2}
$$

where remember that w_{1} is the sum of ranks of the x_{i} 's.
Step 3 Reject H_{0} when $u_{1} \geq u_{n_{1}, n_{2}, \alpha}$ (using the table) or compute:

$$
\text { pvalue }=P\left(U \geq u_{1}\right)=P\left(U \leq u_{2}\right) \text {, reject if it's less than } \alpha .
$$

(If n_{1} and n_{2} are large, we can approximate the distribution of U under H_{0} by a normal distribution.)

Example

MIT OpenCourseWare
http://ocw.mit.edu

15.075J / ESD.07J Statistical Thinking and Data Analysis

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

