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1 Structure of Class

SLIDE 1
e Linear Optimization (LO): Lec. 1-9
e Network Flows: Lec. 10-11
e Discrete Optimization: Lec. 12-15
e Dynamic Optimization: Lec. 16
e Nonlinear Optimization (NLO): Lec. 17-24
2 Requirements
SLIDE 2
e Homeworks: 30%
e Midterm Exam: 30%
e Final Exam: 40%
e (Class Participation: important tie breaker
Use of commercial software for solving optimization problems
3 Lecture Outline
SLIDE 3
e History of Optimization
e Where LOPs Arise?
e Examples of Formulations
4 History of Optimization
SLIDE 4
Fermat, 1638; Newton, 1670
min f(x) x: scalar
df (x)
=0
dx



Euler, 1755

min f(x1,..., %)
Vi(®)=0
Lagrange, 1797
min  f(z1,...,2,)

st. gp(er,...,2,) =0 k=1,....m

Euler, Lagrange Problems in infinite dimensions, calculus of variations.

5 Nonlinear Optimization

5.1 The general problem

min  f(x1,..., %)
st. g1(xr,...,en) <0

gm (21, ... 2n) <0.

6 What is Linear Optimization?

6.1 Formulation
minimize 3xq1 + o
subject to @1 4+ 2x9 > 2
2¢) + 29> 3
x1 > 0,22 >0

=(1) = () e (3) a=[3 7]

minimize cx
subject to Axr>b
x>0

7 History of LO

7.1 The pre-algorithmic period

Fourier, 1826 Method for solving system of linear inequalities.

de la Vallée Poussin simplex-like method for objective function with abso-
lute values.

SLIDE 5

SLIDE 6

SLIDE 7



Kantorovich, Koopmans, 1930s Formulations and solution method.

von Neumann, 1928 game theory, duality.

Farkas, Minkowski, Carathéodory, 1870-1930 Foundations.

7.2 The modern period
George Dantzig, 1947 Simplex method.

1950s Applications.

1960s Large Scale Optimization.

1970s Complexity theory.

Khachyan, 1979 The ellipsoid algorithm.

Karmakar, 1984 Interior point algorithms.

8 Where do LOPs Arise?

8.1 Wide Applicability

e Transportation

Air traffic control, Crew scheduling, . ..

Movement of Truck Loads

o Telecommunications
e Manufacturing

e Medicine

e Engineering

o Typesetting (TEX, IATEX)

9 Transportation Problem

9.1 Data

e m plants, n warehouses
e s; supply of ¢th plant, i =1...m
e d; demand of jth warehouse, j=1...n

e ¢;;: cost of transportation ¢ = j

SLIDE &
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SLIDE 10



9.2 Decision Variables
9.2.1 Formulation
z;; = number of units to send ¢ = j
m n
min Z Z CijLij
i=1 j=1

m
s.t. Zl‘ij:dj _]:177,
i=1

n
E Lij = 8§ i=1...m
j=1

l‘”ZO

10 Sorting through LO

e (Given n numbers ¢, ¢, ..., ¢p;
e The order statistic ¢(1y, ¢y, -+, ¢yt c(1) < ey <o < ey

e Use LO to find Zle C(iy-
min Zcixi
iﬁl
s.t. le =k
i=1

0<z <1 t=1,...,n

11 Investment under taxation

e You have purchased s; shares of stock 7 at price ¢;, i = 1,...,n.
e Current price of stock ¢ is p;
e You expect that the price of stock ¢ one year from now will be r;.

e You pay a capital-gains tax at the rate of 30% on any capital gains at the
time of the sale.

e You want to raise C' amount of cash after taxes.
e You pay 1% in transaction costs.

e Example: You sell 1,000 shares at $50 per share; you have bought them
at $30 per share; Net cash is:

50 x 1,000 — 0.30 x (50 — 30) x 1,000—
0.01 x 50 x 1,000 = $43, 500.
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11.1 Formulaflon SLDE 14
max Z ri(si — i)
i=1
s.t. sz’l‘z’ —0.30 Z(pl —q)w — 0012]%%’ >C
i=1 i=1

i=1

nglgsl

12 Investment Problem
SLIDE 15

e Five investment choices A, B, C, D, E.
e A, C and D are available in 1993.

e B is available in 1994.

e L is available in 1995.

e Cash earns 6% per year.

e $1,000,000 in 1993.

12.1 Cash Flowper Dollar Invested
Year: A B C D E

SLIDE 16

1993 -1.00 0 -1.00 -1.00 0
1994 +0.30 -1.00 +1.10 0 0
1995 +1.00 +0.30 0 0 -1.00
1996 0 +1.00 0 +1.75 +1.40

LIMIT $500,000 NONE $500,000 NONE $750,000

12.2 Formulation
12.2.1 Decision Variables
SLIDE 17
e A ... E: amount invested in $ millions
e (C'ashy: amount invested in cash in period ¢, ¢ =1,2,3

max 1.06Cashs + 1.00B + 1.75D + 1.40F
st. A+C+ D+ Cash; <1
Cashs + B <0.34A 4+ 1.1C 4+ 1.06C ash,
Cashs +1.0F < 1.0A+ 0.3B + 1.06Cashs
A <05, <05, E<0.75
A . E>0



e Solution: A=05M,B=0,C=0,D=05M, E=0.659M, Cash, =0,

Cashs = .15M , Cashs = 0; Objective: 1.7976 M

13 Manufacturing

13.1 Data
e n products, m raw materials

e c;: profit of product j

e b;: available units of material 7.

e a;;: # units of material ¢ product j needs in order to be produced.

13.2 Formulation
13.2.1 Decision variables

x; = amount of product j produced.

n
max E le‘j
j=1

st. ane+ -+ apr, < by

Am1Z1 + -+ Amp Ty < by,

xz; >0, j=1...n

14 Capacity Expansion

14.1 Data and Constraints
Dy: forecasted demand for electricity at year ¢
FEy: existing capacity (in oil) available at ¢
cp: cost to produce IMW using coal capacity
ng: cost to produce IMW using nuclear capacity
e No more than 20% nuclear
e Coal plants last 20 years

e Nuclear plants last 15 years
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14.2 Decision Variables

zy: amount of coal capacity brought on line in year ¢.
y¢: amount of nuclear capacity brought on line in year ¢.
we: total coal capacity in year t.

z¢+ total nuclear capacity in year t.

14.3 Formulation

T
min - Y ey 4 neye
t=1
¢
st w = > r,, t=1...T
s=max(0,t—19)
¢
Zr = Z Ys, t=1...T

s=max(0,t—14)
wy + 2z + By > Dy
Zt S 02(wt + z: + Et)
e, Ye, Wi, 2 > 0.

15 Scheduling

15.1 Decision variables
e Hospital wants to make weekly nightshift for its nurses
e [); demand for nurses, j =1...7
e Every nurse works 5 days in a row
e Goal: hire minimum number of nurses
Decision Variables

x;: # nurses starting their week on day j

15.2 Formulation

7
min ) z;
j=1

s.t. a1+ ra+ x5+ x6+ @7
1+ Z2 rs+ T+ @7
1+ Tat+ T3 ret+ X7
x1+ T2+ X3+ x4t 7

x1+ rot+ w3+ x4+ x5
2; >0 T2+ 3t Tat x5+ T
T3+ x4t T3+ Tet+ Ty

IVIVIVIVIVIVIV

dy
ds
ds
da
ds
dg
d7
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16 Revenue Management

16.1 The industry
SLIDE 25
e Deregulation in 1978

e Prior to Deregulation

— Carriers only allowed to fly certain routes. Hence airlines such as
Northwest, Eastern, Southwest, etc.

— Fares determined by Civil Aeronautics Board (CAB) based on mileage
and other costs (CAB no longer exists)

SLIDE 26
Post Deregulation

e anyone can fly, anywhere

o fares determined by carrier (and the market)

17 Revenue Management

17.1 Economics STLIDE 27

e Huge sunk and fixed costs
e Very low variable costs per passenger ($10/passenger or less)

e Strong economically competitive environment

Near-perfect information and negligible cost of information

Highly perishable inventory

Result: Multiple fares

18 Revenue Management

18.1 Data SLIDE 98

e n origins, n destinations
e 1 hub

e 2 classes (for simplicity), Q-class, Y-class

Q@ Y
e Revenues r;3,rj;

Capacities: Cyo, 0 =1,...n; Cy;, j=1,...n

e Expected demands: Dg, D};



18.2 LO Formulation
18.2.1 Decision Variables

o Qi;: # of Q-class customers we accept from i to j
o Vi1 # of Y-class customers we accept from i to j
maximize Z rfj Qi; + T};Y;‘]
.3
n

subject to Z(Q” + Vi) < Cio

=0
n

Z(QU + Yi]) < o
1=0

0<Qi; <DZ, 0<Y, <D}

19 Revenue Management

19.1 Importance

Robert Crandall, former CEO of American Airlines:

We estimate that RM has generated $1.4 billion in incremental revenue for
American Airlines in the last three years alone. This is not a one-time benefit.
We expect RM to generate at least $500 million annually for the foreseeable
future. As we continue to invest in the enhancement of DINAMO we expect to
capture an even larger revenue premium.

20 Messages

20.1 How to formulate?
1. Define your decision variables clearly.
2. Write constraints and objective function.

3. No systematic method available.

What is a good LO formulation?
A formulation with a small number of variables and constraints, and the matrix
A 1s sparse.

SLIDE 29
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21 Nonlinear Optimization

21.1 The general problem
SLIDE 32

min  f(x1,..., %)
st. g1(xr,...,en) <0

gm (21, ... 2n) <0.

22 Convex functions
SLIDE 33
e f:S— R
e For all x1,29 € S
FOzr+ (1= A)z2) <Af(z1) + (1= A) f(22)

o f(@) concave if —f(x) convex.

23 On the power of LO

23.1 LO formulation SLIDE 34

min  f(®) = maxy (dk/az + ck)
st. Ax>Db
min 2

st. Ax>Db
dk/az—i—ckgz Y k

24 On the power of LO

24.1 Problems with |.| ;
LIDE 35

min 3¢l
st. Ax>b

Idea: |¢| = max{xz, —xz}
min > ¢z
st. Ax>b
Tj <2
—Tj <

Message: Minimizing Piecewise linear convex function can be modelled by LO

10
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