15.093 Optimization Methods

Lecture 2: The Geometry of LO

Outline 1

SLIDE 1

- Polyhedra
- Standard form
- Algebraic and geometric definitions of corners
- Equivalence of definitions
- Existence of corners
- Optimality of corners
- Conceptual algorithm

Central Problem 2

SLIDE 2

$$\begin{array}{lll} \text{minimize} & \boldsymbol{c'x} \\ \text{subject to} & \boldsymbol{a_i'x} = b_i & i \in M_1 \\ & \boldsymbol{a_i'x} \leq b_i & i \in M_2 \\ & \boldsymbol{a_i'x} \geq b_i & i \in M_3 \\ & x_j \geq 0 & j \in N_1 \\ & x_j \geq 0 & j \in N_2 \end{array}$$

2.1 Standard Form

SLIDE 3

minimize
$$c'x$$
 subject to $Ax = b$ $x \ge 0$

Characteristics

- Minimization problem
- Equality constraints
- Non-negative variables

 $\max c'x$

Transformations 2.2

SLIDE 4

$$\begin{aligned} \max \mathbf{c}' \mathbf{x} & - \min(-\mathbf{c}' \mathbf{x}) \\ \mathbf{a}_i' \mathbf{x} &\leq b_i & \mathbf{a}_i' \mathbf{x} + s_i = b_i, \quad s_i \geq 0 \\ & \Leftrightarrow & \\ \mathbf{a}_i' \mathbf{x} &\geq b_i & \mathbf{a}_i' \mathbf{x} - s_i = b_i, \quad s_i \geq 0 \\ & \mathbf{x}_j &\geq_{<} 0 & \mathbf{x}_j &= x_j^+ - x_j^- \\ & \mathbf{x}_j^+ &\geq_{} 0, \quad x_j^- &\geq_{} 0 \end{aligned}$$

2.3 Example

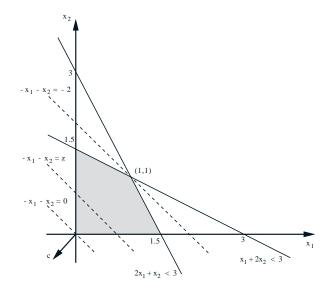
SLIDE 5

$$\begin{array}{ll} \text{maximize} & x_1 - x_2 \\ \text{subject to} & x_1 + x_2 \leq 1 \\ & x_1 + 2x_2 \geq 1 \\ & x_1 \geq 0, x_2 \geq 0 \\ & \Downarrow \\ -\text{minimize} & -x_1^+ + x_1^- + x_2 \\ \text{subject to} & x_1^+ - x_1^- + x_2 + s_1 & = 1 \\ & x_1^+ - x_1^- + 2x_2 & -s_2 = 1 \\ & x_1^+, x_1^-, x_2, s_1, s_2 \geq 0 \end{array}$$

3 Preliminary Insights

SLIDE 6

$$\begin{array}{ll} \text{minimize} & -x_1 - x_2 \\ \text{subject to} & x_1 + 2x_2 \leq 3 \\ & 2x_1 + x_2 \leq 3 \\ & x_1, x_2 \geq 0 \end{array}$$

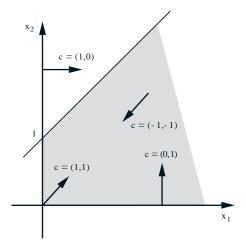


SLIDE 7

$$\begin{array}{ccc}
-x_1 + x_2 & \leq & 1 \\
x_1 & \geq & 0 \\
x_2 & \geq & 0
\end{array}$$

SLIDE 8

- There exists a unique optimal solution.
- There exist multiple optimal solutions; in this case, the set of optimal solutions can be either bounded or unbounded.



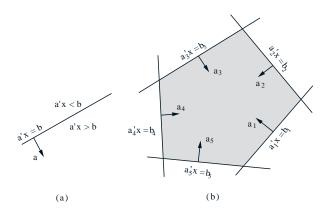
- The optimal cost is $-\infty$, and no feasible solution is optimal.
- The feasible set is empty.

4 Polyhedra

4.1 Definitions

Slide 9

- The set $\{x \mid a'x = b\}$ is called a hyperplane.
- The set $\{x \mid a'x \ge b\}$ is called a halfspace.
- The intersection of many halfspaces is called a **polyhedron**.



5 Corners

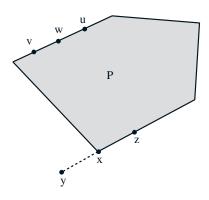
5.1 Extreme Points

Slide 10

- Polyhedron $P = \{ \boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \}$
- $x \in P$ is an extreme point of P

if
$$\not\exists y, z \in P (y \neq x, z \neq x)$$
:

$$\boldsymbol{x} = \lambda \boldsymbol{y} + (1 - \lambda) \boldsymbol{z}, 0 < \lambda < 1$$



5.2 Vertex

SLIDE 11

- $x \in P$ is <u>a vertex</u> of P if $\exists c$:
 - ${m x}$ is the unique optimum

$$\begin{array}{ll}
\text{minimize} & c'y \\
\text{subject to} & y \in P
\end{array}$$

5.3 Basic Feasible Solution

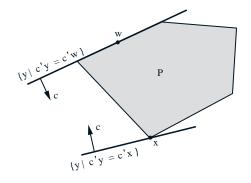
$$P = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 1, x_1, x_2, x_3 \ge 0\}$$

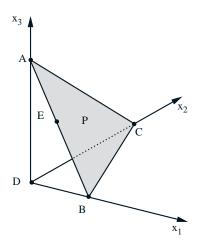
SLIDE 13

Points A,B,C: 3 constraints active

Point E: 2 constraints active

suppose we add
$$2x_1 + 2x_2 + 2x_3 = 2$$
.





Then 3 hyperplanes are tight, but constraints are not linearly independent.

SLIDE 14

Intuition: a point at which n inequalities are tight and corresponding equations are linearly independent.

$$P = \{ \boldsymbol{x} \in \Re^n \mid \boldsymbol{A}\boldsymbol{x} \le \boldsymbol{b} \}$$

- a_1, \ldots, a_m rows of A
- \bullet $x \in P$
- $\bullet I = \{i \mid a_i'x = b_i\}$

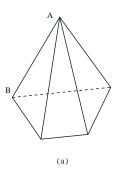
Definition x is <u>a basic feasible solution</u> if subspace spanned by $\{a_i, i \in I\}$ is \Re^n .

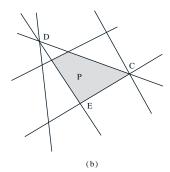
5.3.1 Degeneracy

SLIDE 15

• If |I| = n, then a_i , $i \in I$ are linearly independent; x nondegenerate.

• If |I| > n, then there exist n linearly independent $\{a_i, i \in I\}$; x degenerate





6 Equivalence of definitions

SLIDE 16

Theorem: $P = \{x \mid Ax \leq b\}$. Let $x \in P$. x is a vertex $\Leftrightarrow x$ is an extreme point $\Leftrightarrow x$ is a BFS.

7 BFS for standard form polyhedra

SLIDE 17

- ullet Ax=b and $x\geq 0$
- $m \times n$ matrix **A** has linearly independent rows
- $x \in \mathbb{R}^n$ is a basic solution if and only if Ax = b, and there exist indices $B(1), \ldots, B(m)$ such that:
 - The columns $\boldsymbol{A}_{B(1)}, \ldots, \boldsymbol{A}_{B(m)}$ are linearly independent
 - If $i \neq B(1), \ldots, B(m)$, then $x_i = 0$

7.1 Construction of BFS

SLIDE 18

Procedure for constructing basic solutions

- 1. Choose m linearly independent columns $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for $x_{B(1)}, ..., x_{B(m)}$

$$egin{aligned} m{A}m{x} &= m{b} &
ightarrow & m{B}m{x}_B + m{N}m{x}_N = m{b} \ & m{x}_N &= m{0}, & m{x}_B &= m{B}^{-1}m{b} \end{aligned}$$

7.2 Example

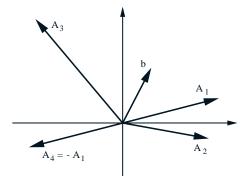
SLIDE 19

$$\begin{bmatrix} 1 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 6 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 8 \\ 12 \\ 4 \\ 6 \end{bmatrix}$$

- $\boldsymbol{A}_4, \boldsymbol{A}_5, \boldsymbol{A}_6, \boldsymbol{A}_7$ basic columns
- Solution: x = (0, 0, 0, 8, 12, 4, 6), a BFS
- Another basis: A_3, A_5, A_6, A_7 basic columns.
- Solution: $\mathbf{x} = (0, 0, 4, 0, -12, 4, 6)$, not a BFS

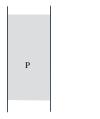
7.3 Geometric intuition

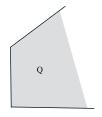
SLIDE 20



8 Existence of BFS

Slide 21





$$P = \{(x_1, x_2) : 0 \le x_1, x_2 \le 1\}$$

$$Q = \{(x_1, x_2) : -x_1 + x_2 \le 2, \ x_1 \ge 0, \ x_2 \ge 0\}.$$

SLIDE 22

Definition: P contains a line if $\exists x \in P$; and $d \in \Re^n$:

$$x + \alpha d \in P \quad \forall \alpha.$$

Theorem: $P = \{x \in \Re^n \mid Ax \ge b\} \ne \emptyset$.

P has a BFS $\Leftrightarrow P$ does not contain a line.

Implications

- Polyhedra in standard form $P = \{x \mid Ax = b, x \geq 0\}$ contain a BFS
- Bounded polyhedra have a BFS.

9 Optimality of BFS

SLIDE 23

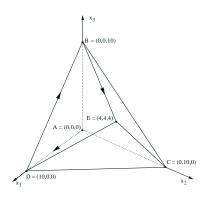
$$\begin{aligned} & \min \quad \boldsymbol{c}' \boldsymbol{x} \\ & \text{s.t.} \quad \boldsymbol{x} \in P = \{ \boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \} \end{aligned}$$

Theorem: Suppose P has at least one extreme point. Either optimal cost is $-\infty$ or there exists an extreme point which is optimal.

10 Conceptual algorithm

SLIDE 24

- Start at a corner
- Visit a neighboring corner that improves objective.



15.093J / 6.255J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.