15.093 Optimization Methods

Lecturae1o: Network Optimization
INntroduction and Applications
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Common Thrust

Move some entity (electricity, a consumer product, a
person, a vehicle, a message, ...) from one point to
another in the underlying network, as efficiently as
possible.

Lecture 1: Learn how to model application settings as network
flow problems.

Lecture 2: Study ways 1o solve the resulting models.
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Shortest Path

ldentify a shortest path from a given source node to a given sink
node.

e Finding a path of minimum length. e Finding a path of maximum reliability.
e Finding a path taking minimum time.
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Maximum Flow

Determine the maximum flow that can be sent from a given
source node 10 a sink node in a capacitated network.

Determining maximum steady-state flow of

e petroleum products in a pipeline network, e messages in a telecommunication network,
e cars in a road network, e electricity in an electrical network.
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Description

Min-Cost Flow

Determine a least cost shipment of a commodity through a network in order to
satisfy demands at certain nodes from available supplies at other nodes. Arcs

have capacities and cost associated with them.

o Distribution of products. ¢ Routing of cars through street networks.
¢ Flow of items in a production line. ¢ Routing of telephone calls.
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In LOP Form
Min-Cost Flow

e Network G = (IV, A).

e Arccostsc: A — ZZ.

e Arc capacities u : A — IN.
e Node balances b: N — 77.

min E Cijiig

(i,5)€A
S.1. Z Tij — Z Tj; — b; forallze N
J:(s,g)eA J:(g,i)eA

xi; < ui; forall (i,7) € A
x;; > 0 forall (z,7) e A
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Shortest Path

The spacing between The spacing between
words and characters words and characters is

is  normally  set normally set automati-

automatically by x
LaTeX.  Interword cally by IATEX. Interword

spacing within one spacing within one line
line is  uniform. Is uniform. BIEX also
LaTeX also attempts attempts to keep the
to keep the word word spacing for differ-
spacing for different :

ent lines as nearly the

lines as nearly the .
same as possible. same as possible.
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Interword Spacing in IATgX (2)

Shortest Path

e [ he paragraph consists of n words, indexed by 1,2,...,n.

e c;; IS the attractiveness of a line if it begins with 2 and ends with
7 —1.

o (ATEX uses a formula to compute the value of each ¢;;.)

For instance,
Cio9 =— —10, 000 Ci13 — —1, 000

ci14 = 100 C1,37 =— —100, 000
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Shortest Path

Theorem 1

The problem of decomposing a paragraph into several
lines of text to maximize total attractiveness can be
formulated as a shortest path problem.
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Dynamic Lot Sizing

Shortest Path

e T" periods of demand for a product. The demand is d; > 0 in
period t.

e Let x; be the production in period t (to be determined).

¢ Production cost fi(x:) = as + byx:.

e Let I, be the inventory carried from period ¢ to period t 4 1.
e h:I; linear cost of carrying inventory.

What is the minimum cost way of meeting demand?
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Shortest Path

Lemma 1 7There is exactly one arc with positive flow directed into
each nodet > 0.
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Shortest Path
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Shortest Path

Corollary 1 Production in period s satisfies demands exactly in
periods s,s +1,...,t, forsomet.
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Dynamic Lot Sizing (4)

Shortest Path

Theorem 2 The optimal production and inventory schedule can
be determined by solving a shortest path problem.

Let ¢, e the cost of producing in period s 10 meet demands in
periods s,s + 1,...,t — 1 (including cost of inventory).
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Baseball Elimination
Maximum Flow

http://riot.ieor.berkeley.edu/baseball/
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Baseball Elimination (2)

Maximum Flow

Team 0 is “our” team (e.qg., ).
There are n other teams.

w; = humber of wins team 2 has so far.

gi; = number of games left between teams z and 3.

Our team is eliminated if, for all possible ways of
playing out the rest of the season, there is always
another team that ends up with more wins than our
team.
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Baseball Elimination (3)

Maximum Flow

Nodes for each team 7 # 0, for every pair {i, 7} of teams
(2,7 # 0), source s, and sink t.

Arcs:

e (2,{7,7}) with capacity +oc.

® (s,17) with capacity wo + ) _; goj — wi.
e ({2,7},t) with capacity g;;.
Interpretation:

Flow on arc (z,{%,7}) = # of remaining games with j that z wins.
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Baseball Elimination (4)
Maximum Flow

Theorem 3 There is a flow saturating t if and only if
there is a way to play out the season where Team 0 is
not eliminated.
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Max-Flow vs. Min-Cut

Maximum Flow

What is the value of the max flow in this network?
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Max-Flow vs. Min-Cut (2)
Maximum Flow

An (s, t)-cut in a hetwork G = (N, A) is a partition of N into two
disjoint subsets § and T such thats € Sandt € T.

The capacity of a cut (S,T') is > ;cg D er Yij-

Theorem 4 The value of a maximum (s, t)-flow is
equal to the capacity of a minimum (s, t)-cut.
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Open Pit Mining
Maximum Flow
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Open Pit Mining (2)

Maximum Flow
Small Example
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Open Pit Mining (3)
Maximum Flow

e There is a1 : 1-correspondence between feasible sets of
blocks and (s, t)-cuts of finite capacity.

e A feasible set B of blocks corresponds 1o the cut {s} U B.

e [ he weight of a feasible set B of blocks is
w(B) = ) icp+ Wi — ) iep- |wil-
e The capacity of the cut {s} U Bis } . o+ w;+ > ;g |wil.

e Hence, w(B) +cap({s} U B) = > ;..,.~0 Wi-
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Passenger Routing
Min-Cost Flow

e United Airlines has seven daily flights from BOS to SFO, every
two hours, starting at 7am.

e Capacities are 100, 100, 100, 150, 150, 150, and oc.

e Passengers suffering from overbooking are diverted to later
flights.

e Delayed passengers get $200 plus $20 for every hour of delay.

e Suppose that today the first six flighs have 110, 160, 103, 149,
175, and 140 confirmed reservations.

Determine the most economical passenger routing strategy!
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Postman Problem
Min-Cost Flow
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Postman Problem (2)
Min-Cost Flow

e In an optimal walk, a postal carrier might traverse arcs more
than once.
e Any carrier walk must satisfy the following conditions:

Y mj— Y mu =0 forallie N

g:(i,5)cA F:(g,5)cA
L4 > 1 for all (‘?,,j) cA

e Here, x;; is the # of times the carrier traverses arc (z, 7).

If we get =, how can we reconstruct a walk?
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Network
Optimization

Further Models

e Minimum spanning tree problems,

e Matching problems,

e Generalized flow problems,

e Multicommodity flow problems,

e Constrained shortest path problems,
e Unsplittable flow problems,

e Network design problems,
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