15.093 Optimization Methods

Lecture 11: Network Optimization The Network Simplex Algorithm

Network Optimization

Why do we care?

- Networks and associated optimization problems constitute reoccurring structures in many real-world applications.
- The network structure often leads to additional insight and improved understanding.
- Given integer data, the standard models have integer optimal solutions.
- The network structure also enables us to design more efficient algorithms.

Network Optimization

A Comparison

Sample Instance...

1,772 nodes and 2,880 arcs

Network Optimization

A Comparison

Running Times

Algorithm	Running Time (sec)	# Iterations
Standard Simplex	334.59	42759
Network Simplex	7.37	23306
Ratio	2.2 %	54 %

Average over 5 random instances with 10,000 nodes and 25,000 arcs each.

Outline

Today's Lecture

- The Simplex Algorithm: A Reminder
 The Network Simplex: A Combineterial
- The Network Simplex: A Combinatorial View
- The Network Simplex: An Animated View
- The Network Simplex: An Algebraic View

The Simplex Algorithm

A Reminder

The Problem...

 $\begin{array}{ll} \min \ c'x\\ \mathrm{s.t.} \ Ax = b\\ x \geq 0 \end{array}$

SMA-HPC ©2000 MIT

The Simplex Algorithm

A Reminder

The Algorithm

- 1. Start with basis $B = [A_{B(1)}, \ldots, A_{B(m)}]$ and BFS x.
- 2. Compute $\overline{c}_j = c_j c'_B B^{-1} A_j$.
 - If $\overline{c}_j \geq 0$; *x* optimal; stop.
 - Select j such that $\overline{c}_j < 0$.

3. Compute $u = B^{-1}A_j$. $\theta^* = \min_{1 \le i \le m, u_i > 0} \frac{x_{B(i)}}{u_i} = \frac{x_{B(\ell)}}{u_\ell}$.

4. Form a new basis by replacing $A_{B(\ell)}$ with A_j .

5.
$$y_j = \theta^*$$
; $y_{B(i)} = x_{B(i)} - \theta^* u_i$.

The Problem

Combinatorially...

Determine a least cost shipment of a commodity through a network in order to satisfy demands at certain nodes from available supplies at other nodes. Arcs have costs associated with them.

- Network G = (N, A).
- Arc costs $c: A \to \mathbb{Z}$.
- Node balances $b: N \to \mathbb{Z}$.

The Problem

Algebraically...

 $egin{array}{lll} \min & \displaystyle{\sum_{(i,j)\in A}c_{ij}x_{ij}} \ {
m s.t.} & \displaystyle{\sum_{j:(i,j)\in A}x_{ij}-\sum_{j:(j,i)\in A}x_{ji}=b_i} \ {
m for all } i\in N \ {
m } x_{ij}\geq 0 \ {
m for all } (i,j)\in A \end{array}$

Tree Solutions

Definition...

- A tree is a graph that is connected and has no cycles.
- A spanning tree of a graph G is a subgraph that is a tree and contains all nodes of G.
- A flow *a* forms a *tree solution* with a spanning tree of the network if every non-tree arc has flow 0.

Tree Solutions

Definition...

- A tree is a graph that is connected and has no cycles.
- A spanning tree of a graph G is a subgraph that is a tree and contains all nodes of G.
- A flow *a* forms a *tree solution* with a spanning tree of the network if every non-tree arc has flow 0.

Tree Solutions

Definition...

- A tree is a graph that is connected and has no cycles.
- A spanning tree of a graph G is a subgraph that is a tree and contains all nodes of G.
- A flow *a* forms a *tree solution* with a spanning tree of the network if every non-tree arc has flow **0**.

Tree Solutions

Tree Solutions

Computing the Flow...

Note: there are two different ways of calculating the flow on (1,2), and both ways give a flow of 4. Is this a coincidence?

2

Tree Solutions

Trees vs. Tree Flows...

- Every tree flow has a corresponding tree (and perhaps more than one).
- Given a tree, we obtain a unique tree flow associated with it.

Tree Solutions

BFS Property...

Theorem 1 If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

flow cost

Tree Solutions

BFS Property...

Theorem 1 If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

Tree Solutions

BFS Property...

Theorem 1 If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

Tree Solutions

BFS Property...

Theorem 1 If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

Tree Solutions

BFS Property...

Theorem 1 If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

Tree Solutions

Optimality Condition...

Theorem 2 A (feasible) tree T is optimal if, for some choice of node potentials p_i ,

(a) $\overline{c}_{ij} = c_{ij} - p_i + p_j = 0$ for all $(i, j) \in T$, (b) $\overline{c}_{ij} = c_{ij} - p_i + p_j \ge 0$ for all $(i, j) \in A \setminus T$.

Proof:

- $\min \sum_{(i,j)\in A} c_{ij} x_{ij}$ is equivalent to $\min \sum_{(i,j)\in A} \overline{c}_{ij} x_{ij}$.
- $\min \sum_{(i,j) \in A} \overline{c}_{ij} x_{ij}$ is equivalent to $\min \sum_{(i,j) \in A \setminus T} \overline{c}_{ij} x_{ij}$.
- For any solution $oldsymbol{x}, oldsymbol{x_{ij}} \geq oldsymbol{x^*_{ij}}$ for all $(i,j) \in A \setminus T$.

Tree Solutions

Computing Node Potentials...

Here is a spanning tree with arc costs. How can one choose node potentials so that reduced costs of tree arcs are 0?

Tree Solutions

Computing Node Potentials...

There is a redundant constraint in the minimum cost flow problem.

One can set p_1 arbitrarily. We will let $p_1 = 0$.

What is the node potential for 2?

Tree Solutions

Computing Node Potentials...

What is the node potential for 7?

SMA-HPC ©2000 MIT

Tree Solutions

Computing Node Potentials...

What is the potential for node 3?

Tree Solutions

Computing Node Potentials...

What is the potential for node 6?

SMA-HPC ©2000 MIT

Tree Solutions

Computing Node Potentials...

What is the potential for node 4?

SMA-HPC ©2000 MIT

Tree Solutions

Computing Node Potentials...

What is the potential for node 5?

SMA-HPC ©2000 MIT

5

6

-6

Tree Solutions

Computing Node Potentials...

These are the node potentials associated with this tree. They do not depend on arc flows, nor on costs of non-tree arcs.

SMA-HPC ©2000 MIT

5

3

-2

3

Tree Solutions

Updating the Tree...

Overview of the Algorithm

- Determine an initial feasible tree T. Compute flow *a* and node potentials *p* associated with T.
- 2. Calculate $\overline{c}_{ij} = c_{ij} p_i + p_j$ for $(i, j) \notin T$.
 - If $\overline{c} \geq 0$, *x* optimal; stop.
 - Select (i, j) with $\overline{c}_{ij} < 0$.
- 3. Add (i, j) to T creating a unique cycle C. Send a maximum flow around C while maintaining feasibility. Suppose the exiting arc is (k, ℓ) .
- $4. T := (T \setminus (k, \ell)) \cup (i, j).$

Min-Cost Flow

Our reasoning has two important and far-reaching implications:

Integrality

- There always exists an integer optimal flow (if node balances b_i are integer).
- There always exist optimal integer node potentials (if arc costs c_{ij} are integer).

An Animation

SMA-HPC ©2000 MIT

The Algebraic View

- Bases and trees.
- Dual variables and node potentials.
- Changing bases and updating trees.
- Optimality testing.

The Algebraic View

Bases vs. Trees...

The constraint matrix A of the min-cost flow problem is the node-arc incidence matrix of the underlying network.

	(1, 2)	(2, 6)	(3, 2)	(4, 3)	(4, 5)	(5,3)	(5, 6)	(6,7)	(7, 1)
1	+1	0	0	0	0	0	0	0	-1
2	-1	+1	-1	0	0	0	0	0	0
3	0	0	+1	-1	0	-1	0	0	0
4	0	0	0	+1	+1	0	0	0	0
5	0	0	0	0	-1	+1	+1	0	0
6	0	-1	0	0	0	0	-1	+1	0
7	0	0	0	0	0	0	0	-1	+1

The rows of *A* are linearly dependent.

The Algebraic View

....Bases vs. Trees...

Let **B** be the submatrix corresponding to the tree

The Algebraic View

...Bases vs. Trees...

Let **B** be the submatrix corresponding to the tree

	(1, 2)	(2, 6)	(3, 2)	(4, 3)	(5,3)	(7,1)
4	0	0	0	+1	0	0
5	0	0	0	0	+1	0
6	0	-1	0	0	0	0
7	0	0	0	0	0	+1
3	0	0	+1	-1	-1	0
2	-1	+1	-1	0	0	0
1	+1	0	0	0	0	1

Permuting Rows

The Algebraic View

...Bases vs. Trees...

Let **B** be the submatrix corresponding to the tree

	(4, 3)	(5, 3)	(2, 6)	(7,1)	(3, 2)	(1, 2)
4	+1	0	0	0	0	0
5	0	+1	0	0	0	0
6	0	0	-1	0	0	0
7	0	0	0	+1	0	0
3	-1	-1	0	0	+1	0
2	0	0	+1	0	-1	- 1
1	0	0	0	-1	0	+1

Permuting Columns

SMA-HPC ©2000 MIT

The Algebraic View

...Bases vs. Trees...

Corollary 1

(a) The matrix *A* has rank *n* - 1. (b) Every tree solution is a basic solution.

The Algebraic View

...Bases vs. Trees...

Theorem 3 Every tree defines a basis and, conversely, every basis definies a tree.

Suppose the graph defined by a basis contains a cycle 1 - 2 - 3 - 4 - 5 - 6:

The Algebraic View

Dual Variables vs. Node Potentials...

Remember, the simplex algorithm computes the dual variables p as the solution to $p' B = c'_B$.

	(+1)	0	0	0	0	0
	0					
), m, m, m,	0	0	- 1	0	0	0
(p_6, p_7, p_3, p_2)	0	0	0	+1	0	0
					+1	· · · · · · · · · · · · · · · · · · ·
	0	0	+1	0	-1	-1

 $(p_4, p_5, p$

 $(c_{43}, c_{53}, c_{26}, c_{71}, c_{32}, c_{12})$

Hence, $p_2 = -c_{12}, p_3 = c_{32} + p_2, p_7 = c_{71}, \dots$

SMA-HPC ©2000 MIT

_

The Algebraic View

Optimality Testing...

Remember, the simplex algorithm computes the reduced costs \overline{c} as $\overline{c}_{ij} = c_{ij} - p'A_{ij}$.

	(1, 2)	(2, 6)	(3, 2)	(4, 3)	(4, 5)	(5, 3)	(5, 6)	(6,7)	(7, 1)
1	+1	0	0	0	0	0	0	0	-1
2	-1	+1	-1	0	0	0	0	0	0
3	0	0	+1	-1	0	-1	0	0	0
4	0	0	0	+1	+1	0	0	0	0
5	0	0	0	0	-1	+1	+1	0	0
6	0	-1	0	0	0	0	-1	+1	0
7	0	0	0	0	0	0	0	-1	+1

Therefore, $\overline{c}_{ij} = c_{ij} - p_i + p_j$.

Summary

- The network simplex algorithm is extremely fast in practice.
- Relying on network data structures, rather than matrix algebra, causes the speedups. It leads to simple rules for selecting the entering and exiting variables.
- Running time per pivot:
 - arcs scanned to identify an entering arc,
 - arcs scanned of the basic cycle,
 - nodes of the subtree.
- A good pivot rule can dramatically reduce running time in practice.

MIT OpenCourseWare http://ocw.mit.edu

15.093J / 6.255J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.