
15.093: Optimization Methods
Lecture 15: Heuristic Methods




1 Outline Slide 1 � Approximation algorithms � Local search methods � Simulated annealing 2 Approximation algorithms Slide 2 � Algorithm H is an �-approximation algorithm for a minimization prob�lem with optimal cost Z , if H runs in polynomial time, and returns a feasible solution with cost ZH: � ZH � (1 + �)Z � For a maximization problem � ZH � (1� �)Z 2.1 TSP 2.1.1 MST-heuristic Slide 3 � Triangle inequality cij � cik + ckj; 8 i; k; j � Find a minimum spanning tree with cost ZT � Construct a closed walk that starts at some node, visits all nodes, returns to the original node, and never uses an arc outside the minimal spanning tree � Each arc of the spanning tree is used exactly twice Slide 4 � Total cost of this walk is 2ZT � Because of triangle inequality ZH � 2ZT �� But ZT � Z , hence � ZH � 2ZT � 2Z 1-approximation algorithm 1 



2.1.2 Matching heuristic � Find a minimum spanning tree. Let ZT be its cost Slide 5 � Find the set of odd degree nodes. There is an even number of them. Why� � Find the minimum matching among those nodes with cost ZM � Adding spanning tree and minimum matching creates a Eulerian graph, i.e., each node has even degree. Construct a closed walk � Performance ZH � ZT + ZM � Z � + 1�2Z � � 3�2Z � Slide 6 3 Local search methods � Local Search: replaces current solution with a better solution by slight modi�cation (searching in some neighbourhood) until a local optimal solution is obtained Slide 7 � Recall the Simplex method 3.1 TSP-2OPT � Two tours are neighbours if one can be obtained from the other by removing two edges and introducing two new edges Slide 8 2� Each tour has O(n ) neighbours. Search for better solution among its neighbourhood. Slide 9 � Performance of 2-OPT on random Euclidean instances Size N 100 1000 10000 100000 1000000 � Matching 9.5 9.7
 9.9 9.9 -2OPT 4.5 4.9 5 4.9 4.9 2




3.2 Extensions 4 Extensions � Iterated Local Search Slide 10 � Large neighbourhoods (example 3-OPT) � Simulated Annealing � Tabu Search � Genetic Algorithms 4.1 Large Neighbourhoods � Within a small neighbourhood, the solution may be locally optimal. Maybe by looking at a bigger neighbourhood, we can �nd a better solution. Slide 11 � Increase in computational complexity 4.1.1 TSP Again 3-OPT: Two tours are neighbour if one can be obtained from removing three edges and introducing three new edges the other by Slide 12 3-OPT improves on 2-OPT performance, with corresponding increase in execution time. Improvement from 4-OPT turns out to be not that substantial compared to 3-OPT. 5 Simulated Annealing Slide 13 � Allow the possibility of moving to an inferior solution, to avoid being trapped at local optimum � Idea: Use of randomization 3




5.1 Algorithm
 Slide 14
� Starting at x, select a random neighbour y in the neighbourhood structure
with probability qxy
 X
qxy � 0; qxy � 1
y2N (x)
� Move to y if c(y) � c(x).
� If c(y) � c(x), move to y with probability
�(c(y)�c(x))�T
e ;
stay in x otherwise
� T is a positive constant, called temperature
5.2 Convergence
 Slide 15
� We de�ne a Markov chain.
� Under natural conditions, the long run probability of �nding the chain at
state x is given by
 �c(x)�T
e
 A
P
 �c(z)�T
with A � e
z
� If T ! 0, then almost all of the steady state probability is concentrated
on states at which c(x) is minimum
� But if T is too small, it takes longer to escape from local optimal (accept
�(c(y)�c(x))�T
an inferior move with probability e ). Hence it takes much
longer for the markov chain to converge to the steady state distribution
5.3 Cooling schedules
 Slide 16
� T (t) � R� log(t). Convergence guaranteed, but known to be slow empiri
cally.
 n
� Exponential Schedule: T (t) � T (0)a with a � 1 and very close to 1
(a�0.95 or 0.99) commonly used.
4 



5.4 Knapsack Problem Slide 17 n nX X max cixi : aixi � b; xi 2 f0; 1g i�1 i�1 nLet X � (x1; :::; xn) 2 f0; 1g n� Neighbourhood Structure: N (X) � fY 2 f0; 1g : d(X;Y ) � 1g. Exactly one entry has been changed Slide 18 Generate random Y � (y1; :::; yn): � Choose j uniformly from 1; 2; :::; n. � yi � xi if i 6� j. yj � 1 � xj. P � Accept if i aiyi � b. 5.4.1 Example Slide 19 � c�(135, 139, 149, 150, 156, 163, 173, 184, 192, 201, 210, 214, 221, 229, 240) � a�(70, 73, 77, 80,82, 87, 90,94, 98, 106, 110, 113, 115, 118, 120) � b � 750 �� X � (1; 0; 1; 0; 1; 0; 1; 1; 1; 0; 0; 0; 0; 1; 1), with value 1458 Slide 20 Cooling Schedule: � T0 � 1000 � probability of accepting a downward move is between 0.787 (ci � 240) and 0.874 (ci � 135). � Cooling Schedule: T (t) � �T (t� 1), � � 0:999 � Number of iterations: 1000, 5000 Slide 21 Performance: � 1000 iterations: best solutions obtained in 10 runs vary from 1441 to 1454 � 5000 iterations: best solutions obtained in 10 runs vary from 1448 to 1456. 
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