15.093: Optimization Methods

Lecture 15: Heuristic Methods



1 Outline
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e Approximation algorithms

e Local search methods

e Simulated annealing

2 Approximation algorithms
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e Algorithm H is an e-approximation algorithm for a minimization prob-

lem with optimal cost Z*, if H runs in polynomial time, and returns a
feasible solution with cost Zy:

Zu< (1462

e For a maximization problem

Zy>(1—e)2*

2.1 TSP
2.1.1 MST-heuristic
SLIDE 3
e Triangle inequality

cij < cig + cij, Vi k,j

e Find a minimum spanning tree with cost Zr

e Construct a closed walk that starts at some node, visits all nodes, returns
to the original node, and never uses an arc outside the minimal spanning
tree

e Each arc of the spanning tree is used exactly twice
SLIDE 4

e Total cost of this walk 1s 277
e Because of triangle inequality 7y < 277

e But Zp < 7%, hence
Tm < 27p <27*

l-approximation algorithm



2.1.2 Matching heuristic

3.1

Find a minimum spanning tree. Let Z7 be its cost
Find the set of odd degree nodes. There is an even number of them. Why?
Find the minimum matching among those nodes with cost Zys

Adding spanning tree and minimum matching creates a Fulerian graph,
1.e., each node has even degree. Construct a closed walk

Performance

Iu < Zp+ Iy < 254122 =3/22*

Local search methods

Local Search: replaces current solution with a better solution by slight
modification (searching in some neighbourhood) until a local optimal so-
lution is obtained

Recall the Simplex method

TSP-20PT

Two tours are neighbours if one can be obtained from the other by remov-
ing two edges and introducing two new edges

Each tour has O(n?) neighbours. Search for better solution among its
neighbourhood.

Performance of 2-OPT on random Euclidean instances

Size N 100 | 1000 | 10000 | 100000 | 1000000
Matching | 9.5 | 9.7 9.9 9.9 -
20PT 4.5 | 4.9 5 4.9 4.9
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3.2 Extensions

4 Extensions
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o [terated Local Search

e Large neighbourhoods (example 3-OPT)
e Simulated Annealing

e Tabu Search

e Genetic Algorithms

4.1 Large Neighbourhoods
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e Within a small neighbourhood, the solution may be locally optimal. Maybe
by looking at a bigger neighbourhood, we can find a better solution.

e Increase in computational complexity

4.1.1 TSP Again
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3-OPT: Two tours are neighbour if one can be obtained from the other by
removing three edges and introducing three new edges

3-OPT improves on 2-OPT performance, with corresponding increase in exe-
cution time. Improvement from 4-OPT turns out to be not that substantial
compared to 3-OPT.

5 Simulated Annealing
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e Allow the possibility of moving to an inferior solution, to avoid being

trapped at local optimum

e Idea: Use of randomization



5.1

5.2

5.3

Algorithm

Starting at z, select a random neighbour y in the neighbourhood structure
with probability ¢,y

Qry > 0, Z Qry = 1
yEN (z)

Move to y if ¢(y) < e(x).
If ¢(y) > c(x), move to y with probability
e~ (cW)—c(@))/T

bl
stay in x otherwise

T 1s a positive constant, called temperature

Convergence
We define a Markov chain.
Under natural conditions, the long run probability of finding the chain at
state x is given by
e—c(x)/T
A

with A =3 e=e@)/T

If T"— 0, then almost all of the steady state probability is concentrated
on states at which ¢(z) is minimum

But if T is too small, it takes longer to escape from local optimal (accept
an inferior move with probability e_(c(y)_c(x))/T). Hence it takes much
longer for the markov chain to converge to the steady state distribution

Cooling schedules

T(t) = R/ log(t). Convergence guaranteed, but known to be slow empiri-
cally.

Exponential Schedule: T'(#) = T(0)a™ with @ < 1 and very close to 1
(a=0.95 or 0.99) commonly used.
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5.4 Knapsack Problem

maxzn:cixi : Zn:ail‘i <b, x;€{0,1}

i=1 i=1
Let X = (21, ...,2,) € {0,1}"

o Neighbourhood Structure: N(X) ={Y € {0,1}" :d(X,Y) = 1}. Exactly

one entry has been changed
Generate random Y = (y1, ..., Yn):

e Choose j uniformly from 1,2, ..., n.
s y=x;ili£j yy=1—x;.
o Accept if Y. a;y; < b.

5.4.1 Example
o c=(135, 139, 149, 150, 156, 163, 173, 184, 192, 201, 210, 214, 221, 229, 240)
e a=(70, 73, 77, 80,82, 87, 90,94, 98, 106, 110, 113, 115, 118, 120)
e b=750
e X*=(1,0,1,0,1,0,1,1,1,0,0,0,0, 1, 1), with value 1458
Cooling Schedule:

Tp = 1000

probability of accepting a downward move is between 0.787 (¢; = 240) and
0.874 (¢; = 135).

Cooling Schedule: T'(t) = aT(t — 1), o = 0.999
e Number of iterations: 1000, 5000
Performance:
e 1000 iterations: best solutions obtained in 10 runs vary from 1441 to 1454

e 5000 iterations: best solutions obtained in 10 runs vary from 1448 to 1456.
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