15.093J Optimization Methods

Lecture 22: Barrier Interior Point Algorithms

1 Outline

SLIDE 1

- 1. Barrier Methods
- 2. The Central Path
- 3. Approximating the Central Path
- 4. The Primal Barrier Algorithm
- 5. The Primal-Dual Barrier Algorithm
- 6. Computational Aspects of IPMs

2 Barrier methods

SLIDE 2

min
$$f(\boldsymbol{x})$$

s.t. $g_j(\boldsymbol{x}) \le 0$, $j = 1, ..., p$
 $h_i(\boldsymbol{x}) = 0$, $i = 1, ..., m$

$$S = \{ \boldsymbol{x} | g_j(\boldsymbol{x}) < 0, \ j = 1, \dots, p, h_i(\boldsymbol{x}) = 0, \ i = 1, \dots, m \}$$

2.1 Strategy

SLIDE 3

- A barrier function G(x) is a continous function with the property that is approaches ∞ as one of $g_j(x)$ approaches 0 from negative values.
- Examples:

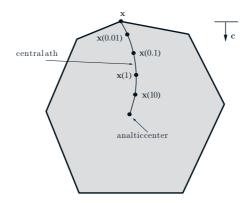
$$G(x) = -\sum_{j=1}^{p} \log(-g_j(x)), \ G(x) = -\sum_{j=1}^{p} \frac{1}{g_j(x)}$$

SLIDE 4

- Consider a sequence of μ^k : $0 < \mu^{k+1} < \mu^k$ and $\mu^k \to 0$.
- Consider the problem

$$x^k = \operatorname{argmin}_{x \in S} \{ f(x) + \mu^k G(x) \}$$

• Theorem If Every limit point x^k generated by a barrier method is a global minimum of the original constrained problem.



2.2 Primal path-following IPMs for LO

- a

$$(P) \quad \min \quad \mathbf{c'x} \\ \text{s.t.} \quad \mathbf{Ax} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0}$$

$$(D) \quad \max \quad \mathbf{b'p} \\ \text{s.t.} \quad \mathbf{A'p} + \mathbf{s} = \mathbf{c} \\ \mathbf{s} \ge \mathbf{0}$$

Barrier problem:

min
$$B_{\mu}(x) = c'x - \mu \sum_{j=1}^{n} \log x_j$$

s.t. $Ax = b$

Minimizer: $\boldsymbol{x}(\mu)$

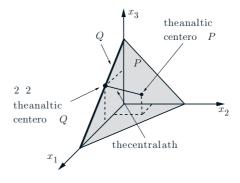
3 Central Path

SLIDE 6

SLIDE 5

- As μ varies, minimizers $\boldsymbol{x}(\mu)$ form the central path
- $\lim_{\mu \to 0} \boldsymbol{x}(\mu)$ exists and is an optimal solution \boldsymbol{x}^* to the initial LP
- For $\mu = \infty$, $\boldsymbol{x}(\infty)$ is called the analytic center

$$\min -\sum_{j=1}^{n} \log x_{j}$$
s.t. $Ax = b$



- $Q = \{ \boldsymbol{x} \mid \boldsymbol{x} = (x_1, 0, x_3), \ x_1 + x_3 = 1, \ \boldsymbol{x} \geq \boldsymbol{0} \}$, set of optimal solutions to original LP
- The analytic center of Q is (1/2, 0, 1/2)

3.1 Example

SLIDE 8

$$\begin{array}{ccc} & \min & x_2 \\ & \text{s.t.} & x_1 + x_2 + x_3 = 1 \\ & & x_1, x_2, x_3 \geq 0 \end{array}$$

$$\min & x_2 - \mu \log x_1 - \mu \log x_2 - \mu \log x_3$$

min $x_2 - \mu \log x_1 - \mu \log x_2 - \mu \log(1 - x_1 - x_2)$.

s.t. $x_1 + x_2 + x_3 = 1$

$$x_1(\mu) = \frac{1 - x_2(\mu)}{2}$$

$$x_2(\mu) = \frac{1 + 3\mu - \sqrt{1 + 9\mu^2 + 2\mu}}{2}$$

$$x_3(\mu) = \frac{1 - x_2(\mu)}{2}$$

The analytic center: (1/3, 1/3, 1/3)

SLIDE 9

SLIDE 10

3.2 Solution of Central Path

• Barrier problem for dual:

$$\max \quad \mathbf{p}'\mathbf{b} + \mu \sum_{j=1}^{n} \log s_{j}$$
s.t.
$$\mathbf{p}'\mathbf{A} + \mathbf{s}' = \mathbf{c}'$$

• Solution (KKT):

$$egin{array}{ll} Ax(\mu) &= b \ x(\mu) &\geq 0 \ A'p(\mu) + s(\mu) &= c \ s(\mu) &\geq 0 \ X(\mu)S(\mu)e &= e\mu \end{array}$$

SLIDE 11

- Theorem: If x^* , p^* , and s^* satisfy optimality conditions, then they are optimal solutions to problems primal and dual barrier problems.
- Goal: Solve barrier problem

min
$$B_{\mu}(\mathbf{x}) = \mathbf{c'x} - \mu \sum_{j=1}^{n} \log x_j$$

s.t. $\mathbf{Ax} = \mathbf{b}$

4 Approximating the central path

SLIDE 12

$$\frac{\partial B_{\mu}(\mathbf{x})}{\partial x_i} = c_i - \frac{\mu}{x_i}$$

$$\frac{\partial^2 B_{\mu}(\mathbf{x})}{\partial x_i^2} = \frac{\mu}{x_i^2}$$

$$\frac{\partial^2 B_{\mu}(\mathbf{x})}{\partial x_i \partial x_j} = 0, \quad i \neq j$$

Given a vector x > 0:

SLIDE 13

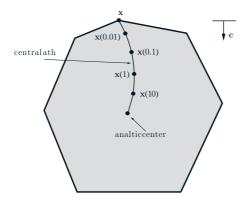
$$B_{\mu}(\mathbf{x} + \mathbf{d}) \approx B_{\mu}(\mathbf{x}) + \sum_{i=1}^{n} \frac{\partial B_{\mu}(\mathbf{x})}{\partial x_{i}} d_{i} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} B_{\mu}(\mathbf{x})}{\partial x_{i} \partial x_{j}} d_{i} d_{j}$$
$$= B_{\mu}(\mathbf{x}) + (\mathbf{c}' - \mu \mathbf{e}' \mathbf{X}^{-1}) \mathbf{d} + \frac{1}{2} \mu \mathbf{d}' \mathbf{X}^{-2} \mathbf{d}$$

 $X = \operatorname{diag}(x_1, \dots, x_n)$ Approximating problem: SLIDE 14

$$\begin{aligned} & \text{min} \quad (c' - \mu e' X^{-1}) d + \frac{1}{2} \mu d' X^{-2} d \\ & \text{s.t.} \quad Ad = 0 \end{aligned}$$

Solution (from Lagrange):

$$c - \mu X^{-1}e + \mu X^{-2}d - A'p = 0$$
$$Ad = 0$$



- System of m+n linear equations, with m+n unknowns $(d_j, j=1,\ldots,n,$ and $p_i, i=1,\ldots,m)$.
- Solution:

$$egin{aligned} oldsymbol{d}(\mu) &= \Big(oldsymbol{I} - oldsymbol{X}^2 oldsymbol{A}'(oldsymbol{A}oldsymbol{X}^2 oldsymbol{A}')^{-1} oldsymbol{A} \Big(oldsymbol{x} oldsymbol{e} - rac{1}{\mu} oldsymbol{X}^2 oldsymbol{c} \ oldsymbol{p}(\mu) &= (oldsymbol{A}oldsymbol{X}^2 oldsymbol{A}')^{-1} oldsymbol{A} (oldsymbol{X}^2 oldsymbol{c} - \mu oldsymbol{x} oldsymbol{e}) \end{aligned}$$

4.1 The Newton connection

SLIDE 16

- $d(\mu)$ is the *Newton direction*; process of calculating this direction is called a *Newton step*
- Starting with x, the new primal solution is $x + d(\mu)$
- ullet The corresponding dual solution becomes $(oldsymbol{p},oldsymbol{s})=ig(oldsymbol{p}(\mu),oldsymbol{c}-oldsymbol{A}'oldsymbol{p}(\mu)ig)$
- We then decrease μ to $\overline{\mu} = \alpha \mu$, $0 < \alpha < 1$

4.2 Geometric Interpretation

SLIDE 17

- Take one Newton step so that x would be close to $x(\mu)$
- Measure of closeness

$$\left|\left|\frac{1}{\mu} X S e - e\right|\right| \le \beta,$$

$$0 < \beta < 1, \mathbf{X} = \operatorname{diag}(\mathbf{x}_1, \dots, \mathbf{x}_n) \mathbf{S} = \operatorname{diag}(\mathbf{s}_1, \dots, \mathbf{s}_n)$$

• As $\mu \to 0$, the complementarity slackness condition will be satisfied

5 The Primal Barrier Algorithm

SLIDE 19

Input

- (a) (A, b, c); A has full row rank;
- (b) $x^0 > 0$, $s^0 > 0$, p^0 ;
- (c) optimality tolerance $\epsilon > 0$;
- (d) μ^0 , and α , where $0 < \alpha < 1$.

SLIDE 20

- 1. (Initialization) Start with some primal and dual feasible $x^0 > 0$, $s^0 > 0$, p^0 , and set k = 0.
- 2. (Optimality test) If $(s^k)'x^k < \epsilon$ stop; else go to Step 3.
- **3.** Let

$$X_k = \operatorname{diag}(x_1^k, \dots, x_n^k),$$

 $\mu^{k+1} = \alpha \mu^k$

SLIDE 21

4. (Computation of directions) Solve the linear system

$$\mu^{k+1} oldsymbol{X}_k^{-2} oldsymbol{d} - oldsymbol{A}' oldsymbol{p} = \mu^{k+1} oldsymbol{X}_k^{-1} oldsymbol{e} - oldsymbol{c} \ oldsymbol{A} oldsymbol{d} = oldsymbol{0}$$

5. (Update of solutions) Let

$$egin{array}{ll} m{x}^{k+1} &= m{x}^k + m{d}, \ m{p}^{k+1} &= m{p}, \ m{s}^{k+1} &= m{c} - m{A}'m{p}. \end{array}$$

6. Let k := k + 1 and go to Step 2.

5.1 Correctness

SLIDE 22

Theorem Given
$$\alpha = 1 - \frac{\sqrt{\beta} - \beta}{\sqrt{\beta} + \sqrt{n}}$$
, $\beta < 1$, $(\boldsymbol{x}^0, \boldsymbol{s}^0, \boldsymbol{p}^0)$, $(\boldsymbol{x}^0 > \boldsymbol{0}, \, \boldsymbol{s}^0 > \boldsymbol{0})$:

$$\left|\left|\frac{1}{\mu^0} \boldsymbol{X}_0 \boldsymbol{S}_0 \boldsymbol{e} - \boldsymbol{e}\right|\right| \leq \beta.$$

Then, after

$$K = \left\lceil \frac{\sqrt{\beta} + \sqrt{n}}{\sqrt{\beta} - \beta} \log \frac{(s^0)' x^0 (1 + \beta)}{\epsilon (1 - \beta)} \right\rceil$$

iterations, $(\boldsymbol{x}^K, \boldsymbol{s}^K, \boldsymbol{p}^K)$ is found:

$$(\boldsymbol{s}^K)'\boldsymbol{x}^K \leq \epsilon.$$

5.2 Complexity

SLIDE 23

- Work per iteration involves solving a linear system with m+n equations in m+n unknowns. Given that $m \le n$, the work per iteration is $O(n^3)$.
- $\epsilon_0 = (s^0)'x^0$: initial duality gap. Algorithm needs

$$O\left(\sqrt{n}\log\frac{\epsilon_0}{\epsilon}\right)$$

iterations to reduce the duality gap from ϵ_0 to ϵ , with $O(n^3)$ arithmetic operations per iteration.

6 The Primal-Dual Barrier Algorithm

6.1 Optimality Conditions

SLIDE 24

$$egin{array}{lll} m{Ax}(\mu) &=& m{b} \ m{x}(\mu) &\geq & m{0} \ m{A'p}(\mu) + m{s}(\mu) &=& m{c} \ m{s}(\mu) &\geq & m{0} \ m{s}_j(\mu) x_j(\mu) &=& \mu & ext{or} \ m{X}(\mu) m{S}(\mu) m{e} &=& m{e} \mu \end{array}$$

$$X(\mu) = \operatorname{diag}(x_1(\mu), \dots, x_n(\mu)), S(\mu) = \operatorname{diag}(s_1(\mu), \dots, s_n(\mu))$$

6.2 Solving Equations

SLIDE 25

$$F(z) = \left[egin{array}{c} Ax - b \ A'p + s - c \ XSe - \mu e \end{array}
ight]$$

z = (x, p, s), r = 2n + mSolve

$$F(z^*) = 0$$

6.2.1 Newton's method

SLIDE 26

$$oldsymbol{F}(oldsymbol{z}^k+oldsymbol{d})pproxoldsymbol{F}(oldsymbol{z}^k)+oldsymbol{J}(oldsymbol{z}^k)oldsymbol{d}$$

Here $J(z^k)$ is the $r \times r$ Jacobian matrix whose (i, j)th element is given by

$$\left. \frac{\partial F_i(\boldsymbol{z})}{\partial z_j} \right|_{\boldsymbol{z} = \boldsymbol{z}^k}$$

$$\boldsymbol{F}(\boldsymbol{z}^k) + \boldsymbol{J}(\boldsymbol{z}^k)\boldsymbol{d} = \boldsymbol{0}$$

Set $z^{k+1} = z^k + d$ (d is the Newton direction)

 $(\boldsymbol{x}^k, \boldsymbol{p}^k, \boldsymbol{s}^k)$ current primal and dual feasible solution Newton direction $\boldsymbol{d} = (\boldsymbol{d}_x^k, \boldsymbol{d}_p^k, \boldsymbol{d}_s^k)$

$$\left[egin{array}{ccc} A & 0 & 0 \ 0 & A' & I \ S_k & 0 & X_k \end{array}
ight] \left[egin{array}{c} d_x^k \ d_p^k \ d_s^k \end{array}
ight] = - \left[egin{array}{c} Ax^k - b \ A'p^k + s^k - c \ X_kS_ke - \mu^ke \end{array}
ight]$$

6.2.2 Step lengths

SLIDE 28

$$egin{array}{ll} m{x}^{k+1} &= m{x}^k + eta_P^k m{d}_x^k \ m{p}^{k+1} &= m{p}^k + eta_D^k m{d}_p^k \ m{s}^{k+1} &= m{s}^k + eta_D^k m{d}_z^k \end{array}$$

To preserve nonnegativity, take

$$\begin{split} \beta_P^k &= \min \left\{ 1, \alpha \min_{\{i | (d_x^k)_i < 0\}} \left(-\frac{x_i^k}{(d_x^k)_i} \right) \right\}, \\ \beta_D^k &= \min \left\{ 1, \alpha \min_{\{i | (d_s^k)_i < 0\}} \left(-\frac{s_i^k}{(d_s^k)_i} \right) \right\}, \end{split}$$

 $0 < \alpha < 1$

6.3 The Algorithm

SLIDE 29

- 1. (Initialization) Start with $x^0 > 0$, $s^0 > 0$, p^0 , and set k = 0
- **2.** (Optimality test) If $(s^k)'x^k < \epsilon$ stop; else go to Step 3.
- 3. (Computation of Newton directions)

$$\mu^k = \frac{(s^k)'x^k}{n}$$

$$X_k = \operatorname{diag}(x_1^k, \dots, x_n^k)$$

$$S_k = \operatorname{diag}(s_1^k, \dots, s_n^k)$$

Solve linear system

$$\left[egin{array}{ccc}A&0&0\0&A'&I\S_k&0&X_k\end{array}
ight]\left[egin{array}{c}d_x^k\d_p^k\d_s^k\end{array}
ight]=-\left[egin{array}{c}Ax^k-b\A'p^k+s^k-c\X_kS_ke-\mu^ke\end{array}
ight]$$

4. (Find step lengths)

$$\beta_P^k = \min\left\{1, \alpha \min_{\{i \mid (d_x^k)_i < 0\}} \left(-\frac{x_i^k}{(d_x^k)_i} \right) \right\}$$

$$\beta_D^k = \min\left\{1, \alpha \min_{\{i \mid (d_s^k)_i < 0\}} \left(-\frac{s_i^k}{(d_s^k)_i} \right) \right\}$$

5. (Solution update)

$$egin{aligned} oldsymbol{x}^{k+1} &= oldsymbol{x}^k + eta_P^k oldsymbol{d}_x^k \ oldsymbol{p}^{k+1} &= oldsymbol{p}^k + eta_D^k oldsymbol{d}_p^k \ oldsymbol{s}^{k+1} &= oldsymbol{s}^k + eta_D^k oldsymbol{d}_s^k \end{aligned}$$

6. Let k := k + 1 and go to Step 2

6.4 Insight on behavior

• Affine Scaling

$$oldsymbol{d}_{ ext{affine}} = -oldsymbol{X}^2 \Big(oldsymbol{I} - oldsymbol{A}'(oldsymbol{A}oldsymbol{X}^2oldsymbol{A}')^{-1}oldsymbol{A}oldsymbol{X}^2\Big)oldsymbol{c}$$

• Primal barrier

$$d_{ ext{primal-barrier}} = \left(I - X^2 A' (A X^2 A')^{-1} A
ight) \left(X e - rac{1}{\mu} X^2 c
ight)$$

• For $\mu = \infty$

$$oldsymbol{d}_{ ext{centering}} = igg(oldsymbol{I} - oldsymbol{X}^2 oldsymbol{A}' (oldsymbol{A} oldsymbol{X}^2 oldsymbol{A}')^{-1} oldsymbol{A} igg) oldsymbol{X} oldsymbol{e}$$

• Note that

$$d_{ ext{primal-barrier}} = d_{ ext{centering}} + rac{1}{\mu} d_{ ext{affine}}$$

- When μ is large, then the centering direction dominates, i.e., in the beginning, the barrier algorithm takes steps towards the analytic center
- When μ is small, then the affine scaling direction dominates, i.e., towards the end, the barrier algorithm behaves like the affine scaling algorithm

7 Computational aspects of IPMs

SLIDE 32

Simplex vs. Interior point methods (IPMs)

- Simplex method tends to perform poorly on large, massively degenerate problems, whereas IP methods are much less affected.
- Key step in IPMs

$$ig(m{A}m{X}_k^2m{A}'ig)m{d}=m{f}$$

 \bullet In implementations of IPMs AX_k^2A' is usually written as

$$AX_k^2A' = LL',$$

where L is a square lower triangular matrix called the *Cholesky factor*

• Solve system

$$(AX_k^2A')d = f$$

by solving the triangular systems

$$Ly = f,$$
 $L'd = y$

- The construction of L requires $O(n^3)$ operations; but the actual computational effort is highly dependent on the sparsity (number of nonzero entries) of L
- Large scale implementations employ heuristics (reorder rows and columns of A) to improve sparsity of L. If L is sparse, IPMs are stronger.

8 Conclusions

- IPMs represent the present and future of Optimization.
- Very successful in solving very large problems.
- Extend to general convex problems

MIT OpenCourseWare http://ocw.mit.edu

15.093 J / 6.255 J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.