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Lecture 22: Barrier Interior Point Algorithms
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Computational Aspects of IPMs

Barrier methods

min  f(x)
st gi(x) <0, j=1,...,p
hz(m)zoa =1, ,m

Strategy

A barrier function G(x) is a continous function with the property that is
approaches co as one of g;(x) approaches 0 from negative values.

Examples:

G(z) =— Zlog(—gj(iv)); G(z) =~ Z gjgm)

k+1

Consider a sequence of pF: 0 < < pF and p* — 0.

Consider the problem

2t = argmings {f(@) + 44 G(x))}

Theorem If Every limit point & generated by a barrier method is a global
minimum of the original constrained problem.

SLIDE 1

SLIDE 2

SLIDE 3

SLIDE 4



centralath

analticcenter

2.2 Primal path-following

IPMs for LO
(P) min c'z (D) max b'p
st. Az =0 st. A'p+s=c
x>0 s>0

Barrier problem:

n
min B, (z) =z — uZlogmj
j=1

st. Az =0

Minimizer: x(u)

3 Central Path

e As yu varies, minimizers x(u) form the central path
e lim, .o x(n) exists and is an optimal solution «* to the initial LP

e For = oo, x(00) is called the analytic center

n
min —E log z;
j=1

s.t. A:ciz b

SLIDE 5

SLIDE 6

SLIDE 7



T3
theanaltic

Q centero P

2 2
theanaltic i
centero @ ;

T

thecentralath

R
o ()= {m | € = (21,0, 23), ©1 + 23 = 1, & > 0}, set of optimal solutions to
original LP
e The analytic center of @ is (1/2,0,1/2)

3.1 Example

min To
S.t. 1‘1+£E2+IL‘3:1
x1,T2,23 >0

min  x9 — plogxry — plogas — plogxs
st. zi+as+x3=1

min  zy — plogxy — plogrs — plog(l — x1 — x9).

z1(pn) = 71_;2(/”

rali) = 1+3u— 1+ 912+ 24
2 2

z3(p) = 1_+2(M)

The analytic center: (1/3,1/3,1/3)

3.2 Solution of Central Path

e Barrier problem for dual:

n
max p'b+pu Z log s;
j=1
st. pPA+s =c
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e Solution (KKT):

Az(p) = b

z(p) > 0

A'p(p) +s(p) = ¢
s(p) = 0
X(n)S(pe = ep

e Theorem: If x*, p*, and s* satisfy optimality conditions, then they are
optimal solutions to problems primal and dual barrier problems.

e Goal: Solve barrier problem

min B, (x) =z — MZlogzj
j=1

st. Axz=0»>

4 Approximating the central path

OBy () — e
axi ! ZT;
Byu(x) _ B
ox?  a?
0B, (z) o
8361-8:75]- o 07 ! 7& J
Given a vector & > 0:
" 9B, (x
Bu(z +d) ~ By(z)+ ) a‘;(_ a,

1
= Bu(x) + (¢ —pe/ X 1)d + §ud’X_2d

X = diag(z1,...,x,)
Approximating problem:

1
min (¢ — pe’ X Hd + Eud’X*Qd
st. Ad=0

Solution (from Lagrange):

c—pX te+puX?d—A'p =0
Ad =0
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System of m + n linear equations, with m+n unknowns (d;, j =1,...,n,

and p;, 1 =1,...,m).

Solution:
2 Al 2 A\—1 1 2
d(u) = (IfX A(AX2A)) A)<a:e—X c)
o
p(n) = (AX?A")'A(X e — pxe)

The Newton connection

d(u) is the Newton direction; process of calculating this direction is called

a Newton step
Starting with @, the new primal solution is « + d(u)
The corresponding dual solution becomes (p, s) = (p(n),c — A'p(p))

We then decrease ptom =ap, 0 <a <1

Geometric Interpretation
Take one Newton step so that  would be close to x(u)

Measure of closeness

HlXSee < g,

i
0<p <1, X =diag(zs,...,z,) S =diag(s,...,sn)

As i — 0, the complementarity slackness condition will be satisfied
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5 The Primal Barrier Algorithm

SLIDE 19
Input

(a) (A, b, ¢); A has full row rank;
) =¥ >0, s° >0, p¥;
(c) optimality tolerance € > 0;
) 1P, and o, where 0 < o < 1. SLIDE 20
1. (Initialization) Start with some primal and dual feasible z° > 0, s >
0, p°, and set k = 0.
(Optimality test) If (s*) 2" < e stop; else go to Step 3.
Let

w N

X = diag(ah,... o),
’uk-i-l _ a’uk
SLIDE 21

4. (Computation of directions) Solve the linear system

;Lk“X,;Qde’p = ;Lk“X,;lefc
Ad =0

5. (Update of solutions) Let

" = 2F 1 d,
K+l _
=P

1 — ¢ — Alp.

S

6. Let k:=k+ 1 and go to Step 2.

5.1 Correctness SLIDE 22

VB-p
VB4 /n

Theorem Given o = 1 — , <1, (2% 8 p?), (2° >0, s > 0):

1
H_OXOSOe_e S ﬁ
H

Then, after

_ VB, (s")2(1+P)
K[\/Bﬂ ) 1

iterations, (2, s%, pX) is found:

(%) zH <e.



5.2 Complexity

SLIDE 23
e Work per iteration involves solving a linear system with m + n equations
in m + n unknowns. Given that m < n, the work per iteration is O(n?).
o ¢g = (8°)x: initial duality gap. Algorithm needs
(@) (ﬁlog %0)
iterations to reduce the duality gap from €g to €, with O(n?) arithmetic
operations per iteration.
6 The Primal-Dual Barrier Algorithm
6.1 Optimality Conditions
SLIDE 24
Az(p) = b
x(p) = 0
A'p(p) +s(n) = c
s(u) > 0
sj(u)zi(p) = p or
X(u)S(ne = ep
X (n) = diag(z1(p), - .., 2 (), S(p) = diag(s1(),- .-, sn(n))
6.2 Solving Equations
SLIDE 25
Az —b
Fz)=| Ap+s—c
X Se — pe
z=(x,p,s8),r=2n+m
Solve
F(z")=0
9
6.2.1 Newton’s method SLIDE 26
F(zF +d) ~ F(z") 4+ J(z")d
Here J(z*) is the 7 x r Jacobian matrix whose (i, )th element is given by
0F;(z)
aZj z—zk
F(zM+J(i=Md=0
Set 281 = 2% 1 d (d is the Newton direction) SLIDE 27



(¥, p”, s*) current primal and dual feasible solution
Newton direction d = (d*, d*, d")

T p,
A 0 O d* AzF — b
0o A I d’; =—| ApF+sf—c
S, 0 X, d* X, Sre — yFe

6.2.2 Step lengths

@t = of 1 phd;
" = p* +Bhd,

1 k
s = 5"+ Bhdy

To preserve nonnegativity, take

T
g = min{l,a min < )},
F gil(@s)i<oy \ (dk);
gl = min{l,a min < )},
P (il(@h)i<or \ (k)

0<a<l1

6.3 The Algorithm

1.

(Initialization) Start with ° > 0, s > 0, p°, and set k = 0

(Optimality test) If (s¥)'z* < € stop; else go to Step 3.

(Computation of Newton directions)

uk _ (Sk)/a.:k
n
X = diag(ah,... o%)

S), = diag(s},...,s")

Solve linear system

A 0 O d* AzF — b
0o A I d’; =—| ApF+sk—c
S, 0 X, dr X, Sre — yFe
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4. (Find step lengths)

J6) min{l,a min ( )}
r {il@s)i<oy \ (dk);

gy = min{l,a min < >}
P {il@)i<oy \ (dk);

5. (Solution update)

@t = ot 4 phd;
p" = p* + Bhd;

41 = ot
6. Let k:=k+ 1 and go to Step 2

6.4 Insight on behavior
SLIDE 31
e Affine Scaling

dattine = — X (1 - A/(AXQA/)_IAXQ)C
e Primal barrier
dprimal—barrier = (I - XQA'(AXQA/)_IA) (Xe — iXQC)
e For =00
eentering = (I - X2A’(AX2A’)’1A)Xe

e Note that
dprimalfbarrier - dcentering + ;daﬁ‘ine
e When p is large, then the centering direction dominates, i.e., in the beginning,
the barrier algorithm takes steps towards the analytic center

e When g is small, then the affine scaling direction dominates, i.e., towards the
end, the barrier algorithm behaves like the affine scaling algorithm

7 Computational aspects of IPMs

SLIDE 32
Simplex vs. Interior point methods (IPMs)

e Simplex method tends to perform poorly on large, massively degenerate
problems, whereas IP methods are much less affected.

e Key step in IPMs
(AX;A")d = f



In implementations of IPMs AX iA’ is usually written as
AX7A = LL,
where L is a square lower triangular matrix called the Cholesky factor

Solve system
(AX3A)d = f

by solving the triangular systems

Ly=f  Ld=y

The construction of L requires O(n?) operations; but the actual compu-
tational effort is highly dependent on the sparsity (number of nonzero
entries) of L

Large scale implementations employ heuristics (reorder rows and columns
of A) to improve sparsity of L. If L is sparse, IPMs are stronger.
Conclusions

IPMs represent the present and future of Optimization.
Very successful in solving very large problems.

Extend to general convex problems

10
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