
DC Programming: The Optimization Method
You Never Knew You Had To Know

May 18, 2012

1 Introduction

1.1 What is DC Programming?

Recall that in the lectures on Support Vector Machines and Kernels, we repeat
edly relied on the use of convex optimization to ensure that solutions existed and
could be computed. As we shall see later in the lecture, there are many cases in
which the assumption that the objective function and constraints are convex (or
quasi-convex) are invalid, and so the methods on convex functions that we have
developed in class prove insufficient.

To deal with these problems, we develop a theory of optimization for a superclass
of convex functions, called DC - Difference of Convex - functions. We now define
such functions formally.

Definition 1.1. Let f be a real valued function mapping Rn to R. Then f is a
DC function if there exist convex functions, g, h : Rn → R such that f can be
decomposed as the difference between g and h:

f(x) = g(x) − h(x) ∀x ∈ Rn

In the remainder of this lecture, we will discuss the solutions to the following - the
DC Programming Problem (DCP):

minimize f0(x)
x∈Rn

(1)
subject to fi(x) ≤ 0, i = 1, . . . , m.

1

where fi : Rn → R is a differentiable DC function for i = 0, . . . ,m.

1.2 Some Intuition About DC Functions

Before we continue with the discussion of the solution to (1), we develop some in
tuition regarding DC functions. Recall that a function f : Rn → R is convex if for
every x1, x2 ∈ Rn and every α ∈ [0, 1] , f(αx1 +(1−α)x2) ≤ αf(x1)+(1−α)f(x2).
In particular, as you may recall, if f is a twice-differential function, then it is con
vex if and only if its Hessian matrix is positive-semidefinite. To get a sense of
what DC functions can look like, we will look at some common convex functions
and the DC functions they can form.

2Example 1.2. Consider the convex functions f1(x) = 1 and f2(x) = x . x

2(a) f1(x) = 1 (b) f2(x) = xx

Example 1.3. Consider the convex functions f1(x) = abs(x) and f2(x) = −log(x).

(c) f = − x21
x

(d) f1(x) = abs(x) (e) f2(x) = −log(x) (f) f = abs(x) + log(x)

Notice that while in these examples, the minimum is easy to find by inspection in
the convex functions, it is less clear in the resulting DC function. Clearly, then,
having DC functions as part of an optimization problem adds a level of complexity
to the problem that we did not encounter in our dealings with convex functions.
Fortunately, as we shall soon see, this complexity is not unsurpassable.

2

�

�

1.3 How Extensive Are These Functions?

1.3.1 Hartman

Theorem 1.4. The three following formulations of a DC program are equivalent:

1. sup{f(x) : x ∈ C}, f, C convex

2. inf{g(x) − h(x) : x ∈ Rn}, g, h convex

3. inf{g(x) − h(x) : x ∈ C, f1(x) − f2(x) ≤ 0}, g, h, f1, f2, C all convex.

Proof. • We will show how to go from formulation (1) to formulation (2).
Define an indicator function to be:

0 if x ∈ C
IC (x) =	 (2)

∞ otherwise

Then sup{f(x) : x ∈ C} = inf{IC (x) − f(x) : x ∈ Rn}.

•	 We will show how to go from formulation (3) to formulation (1).
We have that inf{g(x) − h(x) : x ∈ C, f1(x) − f2(x) ≤ 0}, g, h, f1, f2, C all
convex. Then we can write:

αt = inf{g(x) + tmax{f1(x), f2(x)} − h(x) − tf2(x) : x ∈ C}

for some value of t such that α = αt' for all tf > t. It can be shown that such
a t always exists.

•	 Finally, it is clear that (2) is a special case of (3). Thus, we have shown
conversions (1) → (2) → (3) → (1), indicating that the three formulations
are equivalent.

Next we demonstrate just how large the class of DC functions is.
Theorem 1.5 (Hartman). A function f is locally DC if there exists an ε-ball on
which it is DC. Every function that is locally DC, is DC.

Proposition 1.6. Let fi be DC functions for i = 1, . . . ,m. Then the following
are also DC:

1. λifi(x), for λi ∈ Ri

2. maxifi(x)

3

3. minifi(x)
4. fi(x)i

5.	 fi, twice-continuously differentiable

6. If f is DC and g is convex, then the composition (g ◦ f) is DC.

7. Every continuous function on a convex set,	 C is the limit of a sequence of
uniformly converging DC functions.

2 Optimality Conditions

2.1 Duality

Before we can discuss the conditions for global and local optimality in the canonical
DC Programming problem, we need to introduce some notions regarding duality
in the DCP, and develop some intuition of what this gives us. To begin with this,
we introduce conjugate functions and use them to demonstrate the relationship
between the DCP and its dual.

Definition 2.1. Let g : Rn → R. Then the conjugate function of g(x) is

T g ∗ (y) = sup{x y − g(x) : x ∈ Rn}

To understand what why conjugate functions are so important, we need just one
more definition.
Definition 2.2. The epigraph of a function, g : Rn → R is the set of points lying
on or on top of its graph:

epi(g) = {(x, t) ∈ Rn × R : g(x) ≤ t}

Note that g is convex if and only if epi(g) is a convex set.

Having defined the epigraph, we can now give a geometric interpretation of the
∗conjugate function: The conjugate function g ‘encloses’ the convex hull of epi(g)

with g’s supporting hyperplanes. In particular, we can see that when f is differ
entiable,

df T = argsup{x y − g ∗ (y) : y ∈ Rn} = y(x)
dx

4

That is, y is a dual variable for x, and so can be interpreted as (approximately)
the gradient (or slope in R2) of f at x. This should be a familiar result from the
convex analysis lecture.

(g) A Convex fn f(x) and the affine function
meeting f at x. The conjugate, f ∗(y) of f(x)
is the point of intersection.

(h) A convex set being enclosed by supporting hyper
planes. If C is the epigraph of a function f∗ , then the
intersections of C with the hyperplanes is the set of values
that f∗ takes.

Theorem 2.3. Let g : Rn → R such that g(x) is lower semi-continuous and convex
on Rn . Then

T g(x) = sup{x y − g ∗ (y) : y ∈ Rn}

where g ∗(y) is the conjugate of g(x).

We provide this theorem without proof, and omit further discussion of lower semi-
continuity, but we can safely assume that the functions that we will deal with

∗∗satisfy this. Note that this condition implies that g = g, that is, the conjugate
∗of g conjugate is g, which means that the definitions of g and g are symmetric.

(What does this mean for minimizing g?)

We now demonstrate the relationship between DCP and its dual problem. First
note the form of the conjugate function f ∗ for f ≡ g − h:

T(f(x)) ∗ = ((g − h)(x)) ∗ = sup{x y − (g − h)(x) : x ∈ Rn} = h ∗ (y) − g ∗ (y)

Let α be the optimum value to DCP.

Tα = inf{g(x) − h(x) : x ∈ X} = inf{g(x) − sup{x y − h ∗ (y) : y ∈ Y } : x ∈ X}

T= inf{inf{g(x) − x y + h ∗ (y) : x ∈ X} : y ∈ Y }

= inf{h ∗ (y) − g ∗ (y) : y ∈ Y }

5

Courtesy of Dimitri Bertsekas. Used with permission.

Convex Set
C Supporting

Hyperplanes

Image by MIT OpenCourseWare.

Thus, we have that the optimal value to DCP is the same as the optimal value for
its dual! Now that is symmetry! This means that we can solve either the primal
or the dual problem and obtain the solution to both - the algorithm that we will
employ to solve the DCP will crucially rely on this fact.

2.2 Global Optimality Conditions

Definition 2.4. Define an ε-subgradient of g at x0 to be

∂εg(x 0) = {y ∈ Rn : g(x) − g(x 0) ≥ (x − x 0)T y − ε ∀x ∈ Rn}

Define a differential of g at x0 to be
∂g(x 0) = ∂εg(x 0)

ε>0

Given these two definitions, we have the following conditions for global optimality:

Theorem 2.5 (Generalized Kuhn-Tucker). .
∗Let x be an optimal solution to the (primal) DCP. Then ∂h(x ∗) ⊂ ∂g(x ∗).
∗Let y be an optimal solution to the dual DCP. Then ∂g∗(y ∗) ⊂ ∂h∗(y ∗)

Proof. This condition essentially follows from the equivalence of the primal and
dual optima. We showed before that if α is the optimum value of the DCP, then

α = inf{g(x) − h(x) : x ∈ X} = inf{h ∗ (y) − g ∗ (y) : y ∈ Y }

Then if α is finite, we must have that dom g ⊂ dom h and dom h∗ ⊂ dom g ∗ where
dom g = {x ∈ Rn : g(x) < ∞}, the domain of g. That is, h (respectively, g ∗) is
finite whenever g (respectively, h∗) is finite. Note that we require this inclusion
because we are minimizing the objective function, and so if there existed an x ∈ R∗

such that g(x) < ∞, h(x) = ∞, then g(x)−h(x) would be minimized at x, yielding
an objective value of −∞. Note also that this statement is not an in and only if
statement, as we work under the convention that ∞−∞ = ∞.

∗ ∗Thus, we have that if x is an optimum to the primal DCP, then x ∈ dom g, and
by weak duality,

g(x ∗) − h(x ∗) ≤ h ∗ (y) − g ∗ (y), ∀y ∈ dom h ∗

6

∗ ∗and so (for x ∈ dom h) if x ∈ ∂h(x ∗), then

T x y ≥ h(x ∗) + h ∗ (y) ≥ g(x ∗) + g ∗ (y)

where the first inequality is by definition of ∂h(x ∗) and the second inequality
follows from the weak duality inequality presented.

We can also think of this in terms of the interpretations of the dual problem as
well. We have that if g, h are differentiable, and so ∂h(x ∅ = ∂g(x ∗), then ∗) =
∂h(x ∗) is just the set of gradients of h at x ∗, and by equality of the primal and dual

∗optima, it is the set of y that optimize the dual problem. Thus, this optimality
condition in terms of subdifferentials is analogous to the one we discussed in terms
of domains.

Corollary 2.6. Let P and D be the solution sets of the primal and dual problems
of the DCP, respectively. Then:
∗ x ∈ P if and only if ∂εh(x ∗) ⊂ ∂εg(x ∗) ∀ε > 0.
∗ y ∈ D if and only if ∂εg ∗(y ∗) ⊂ ∂εh∗(y ∗) ∀ε > 0.

Theorem 2.7. Let P and D be the solution sets of the primal and dual problems
of the DCP, respectively. Then:

{∂h(x) : x ∈ P} ⊂ D ⊂ dom h ∗

and

{∂g ∗ (y) : y ∈ D} ⊂ P ⊂ dom g

Note that this theorem implies that solving the primal DCP implies solving the
dual DCP.

2.3 Local Optimality Conditions

We would like to construct an algorithm to find global optimal solutions based on
the conditions discussed in the previous section. However, finding an algorithm
that does this efficiently in general is an open problem, and most approaches are
combinatorial, rather than convex-based, and so rely heavily on the formulation
of a given problem, and are often inefficient. Thus, we present local optimality
conditions, which (unlike the global optimality conditions) can be used to create
a convex-based approach to local optimization. We present these theorems with
out proof as, although they are crucially important to solving DC programming

7

problems, their proofs do not add much more insight. Thus, we refer further in
vestigation to either Hurst and Thoai or Tao and An.

∗Theorem 2.8 (Sufficient Local Optimality Condition 1). Let x be a point that
admits a neighborhood U(x) such that

∂h(x) ∩ ∂g(x ∗) ∅ ∀x ∈ U(x) ∩ dom g

∗Then x is a local minimizer of g − h.

Theorem 2.9 (Sufficient Local Optimality Condition 2: Strict Local Optimal
∗ity). Let int(S) refer to the interior of set S. Then if x ∈ int(dom h) and

∗∂h(x ∗) ⊂ int(∂g(x ∗)), then x is a strict local minimizer of g − h.

∗Theorem 2.10 (DC Duality Transportation of a Local Minimizer). Let x ∈
∗ ∗dom ∂h be a local minimizer of g − h and let y ∈ ∂h(x ∗). Then if g is differ

∗ ∗ ∗ ∗entiable at y , y is a local minimizer of h∗ − g . More generally, if y satisfies
∗ ∗Theorem 2.9, then y is a local minimizer of h∗ − g .

3 Algorithms

As discussed earlier, the conditions for global optimality in DC programs do not
wield efficient general algorithms. Thus, while there are a number of popular tech
niques - among them, branch-and-bound and cutting planes algorithms, we omit
discussion of them and instead focus on the convex-based approach to local opti
mization. In fact, although there has not been an analytic result to justify this,
according to the DC Programming literature, the local optimization approach of
ten yields the global optimum, and a number of regularization and starting-point
choosing methods exist to assist with incorporating the following local optimiza
tion algorithm to find the global optimum in different cases.

3.1 DCA-Convex Approach to Local Optimization

We now present an algorithm to find local optima for a general DC program. First,
we offer the algorithm in raw form, then we will explain each step in an iteration,
and finally, we will state a few results regarding the effectiveness and efficiency of
the algorithm.

8

6=

3.1.1 DCA

1. Choose x0 ∈ dom g

2.	 for k ∈ N do:

3. choose yk ∈ ∂h(xk)

4. choose xk+1 ∈ ∂g∗(yk)

5. if min{|(xk+1 − xl)i|, | (xk+1−xl)i |} ≤ δ:(xk)i

6. then return xk+1

7. end if

8.	 end for

3.1.2 DCA Explanation and Intuition

Let us go over each step of the DCA algorithm in more detail. The overarching
method of the algorithm is to create two sequences of variables, {xk}k, {yk}k so that
{xk} converges to a local optimum of the primal problem, x ∗, and {yk} converges

∗to the local optimum of the dual problem, y . The key idea is to manipulate the
symmetry of the primal and dual problem in order to follow a variation on the
typical sub gradient-descent method used in convex optimization.

Let us now consider each step individually.

•	 Choose x0 ∈ dom g:
Since we are utilizing a descent approach, the convergence of the algorithm
is independent of the starting point of the sequences that the algorithm
creates. Thus, we can instantiate the algorithm with an arbitrary choice of
x0 so long as it is feasible.

•	 Choose yk ∈ ∂h(xk):
TWe have that ∂h(xk) = arg min{h∗(y) − g ∗(yk−1) − x (y − yk−1) : y ∈ Rn}.k

Moreover, since this is a minimization over y, we hold yk−1, xk constant, and
Tso we have that ∂h(xk) = arg max{xk y − h∗(y) : y ∈ Rn}. Computing

this, however is just an exercise in convex optimization, since by the local
optimality conditions, xk is (approximately) a subgradient of h∗ − g ∗, and so
serves a role similar to that in a typical subgradient descent algorithm, which
we solve quickly and efficiently. Since we maximize given xk (which improves
together with yk−1), we guarantee that (h∗ − g ∗)(yk − yk−1) ≤ 0 ∀k ∈ N, and

9

due to the symmetry of duality, that yk converges to a critical point of
(h∗ − g ∗), i.e., a local minimizer.

•	 Choose xk+1 ∈ ∂g∗(yk):
Given the symmetry of the primal and dual problem, this is entirely sym-

Tmetric to the step finding yk. Thus, we choose xk+1 ∈ arg max{x yk − g(x) :
x ∈ Rn}.

•	 If min{|(xk+1 − xl)i|, | (xk+1−xl)i |} ≤ δ: then return xk+1:(xk)i
Although we can guarantee convergence in the infinite limit of k, complete
convergence may take a long time, and so we approximate an optimal solu
tion within a predetermined bound, δ. Once the solution (the change in xk
or yk) is small enough, we terminate the algorithm and return the optimal
value for xk+1 - recall that solving for xk is equivalent to solving for yk.

Figure 1: An example for the Proximal Point subgradient descent method. This
has been shown to be equivalent to a regularized version of DCA, and so offers
valuable intuition into how DCA works.

3.1.3 Well-Definition and Convergence

Here we present a few results regarding the effectiveness and efficiency of the DCA
algorithm. We will give the results without proof, and direct anyone interested in
further delving into this matter to Thoai.
Lemma 3.1. The sequences {xk} and {yk} are well defined if and only if

dom ∂g ⊂ dom ∂h dom ∂h ∗ ⊂ dom ∂g ∗

RnLemma 3.2. Let h be a lower semi-continuous function on and {xk} be a
sequence of elements in Rn such that (i) xk → x ∗; (ii) There exists a bounded

10

Courtesy of Dimitri Bertsekas. Used with permission.

 sequence {yk} such that yk ∈ ∂h(xk); (iii) ∂h(x ∗) ∅. Then

lim h(xk) = h(x ∗)
k→∞

4 Applications to Machine Learning

The literature has references to many uses of DC Programming in Operations
Research, Machine Learning, and Economics.

One interesting use of DC Programming is discussed in the 2006-paper “A DC-
Programming Algorithm for Kernel Selection”. In this paper, the authors discuss
a greedy algorithm to learn a kernel from a convex hull of basic kernels. While
this approach had been popularized before, it was limited to a finite set of basic
kernels. The authors comment that the limitation was due to the non-convexity
of a critical maximization involved in conducting the learning, but find that the
optimization problem can be formulated as a DC Program. In particular, the
objective function used to weigh basic kernels is DC as the limit of DC functions.

Another interesting use of DC Programming is discussed in the 2008-paper “A
DC programming approach for feature selection in support vector machines learn
ing”. Here, DC Programming is employed in an SVM algorithm that attempts
to choose optimally representative features in data while constructing an SVM
classifier simultaneously. The authors equate this problem to minimizing a zero-
norm function over step-k feature vectors. Using the DC-decomposition displayed
below, the authors employ the DCA algorithm to find local minima and applied
it to ten datasets - some of which were particularly sparse - to find that the DCA
algorithm created consistently good classifiers that often had the highest correct
ness rate among the tested classifiers (including standard SVMs, for example).
Despite this, DCA consistently used less features than the standard SVM and
other classifiers, and as a result, was more efficient and used less CPU capacity
than many of the other commonplace classifiers. Thus, all in all, DCA proved
a greatly attractive algorithm for classifying data, and particularly excellent for
very large and sparse datasets.

11

6=

5 Conclusion

As we can see, DC Programming is quite young. Although the oldest result
presented in this lecture dates back to the 1950s (Hartman’s), many of the results
and algorithms discussed here were developed in the 1990s, and their applications
are still very new to the scientific community. However, as can be seen from
the examples that we presented, DC Programming has tremendous potential to
expand and expedite many of the algorithms and techniques that are central to
Machine Learning, as well as other fields. Thus, it is likely that the near future
will bring many more algorithms inspired by DCA and DCA-related approaches
as well as the various combinatoric global approaches that are used to solve DC
Programming problems, but were not discussed here.

References

[1] H. A. L. T. H. M. L. V. V. Nguyen	 and T. P. Dinh. A dc programming
approach for feature selection in support vector machines learning. Advances
in Data Analysis and Classification, 2(3):259–278, 2008.

[2] A. A. R. H. C. A. M. M. Pontil. A dc-programming algorithm for kernel selec
tion. Proceedings of the 23rd International Conference on Machine Learning,
2006.

[3] P. D. TAO and L. T. H. AN. Convex analysis approach to d. c. programming:

12

Theory, algorithms and applications. ACTA MATHEMATICA VIETNAM
ICA, 22(1):289–355, 1997.

[4] R. H. N. Thoai.	 Dc programming: An overview. Journal of Optimization
Theory and Application, 193(1):1–43, October 1999.

MIT OpenCourseWare
http://ocw.mit.edu

15.097 Prediction: Machine Learning and Statistics
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

