15.S50 - Poker Theory and Analytics

Pre-flop Analysis

Pre-flop Analysis

- Motivator
- Range Definition
- Basic Assumptions
- Heads Up
- Other Positions

Massachusetts Institute of Technology

Motivator

- Why are we spending an entire day on pre-flop?
- In tournaments, most of your value will come from playing pre-flop close to optimally
- Most live players are way off in their decision-making
- Its easy to solve; fewer assumptions

Scenario A

Massachusetts Institute of Technology

Scenario A

- No Limit Hold'em Tournament - 125/250 Blinds +25
- trifluvian (BB): 1100

$$
\mathrm{M}=2.59
$$

- Hero (BTN/SB): 3400

$$
\mathrm{M}=8
$$

- Pre Flop: (425) Hero is BTN/SB with 94 6
- Hero...

Scenario A

- No Limit Hold'em Tournament - 125/250 Blinds +25
- trifluvian (BB): 1100
$\mathrm{M}=2.59$
- Hero (BTN/SB): 3400

M $=8$

- Pre Flop: (425) Hero is BTN/SB with 9 6 6
$\mathrm{EV}=($ Pot $*$ Fold\% $)+(1-\mathrm{Fold} \%) *($ Win $\% *$ WinAmt - Lose $\% *$ LoseAmt $)$
Assume call range of 22+, A2+, JT+ (27.60\%)
960 vs $22+, \mathrm{A} 2+, \mathrm{JT}+=$?

Scenario A

Assume call range of 22+, A2+, JT+ (27.60\%)
960 vs $22+$, $\mathrm{A} 2+, \mathrm{JT}+=34.26 \%$

Equity Calculator

| Game | Board Dead |
| :--- | :--- | :--- |
| Holdem | \square |

Sel	960	34.26%
Sel	$22+$, ,A2s+,,KTs+,QTs+,JTs,A20+,KTo+,QTo, ,JTo	65.74%

Massachusetts Institute of Technology

Scenario A

- No Limit Hold'em Tournament - 125/250 Blinds +25
- trifluvian (BB): 1100
$\mathrm{M}=2.59$
- Hero (BTN/SB): 3400

M $=8$

- Pre Flop: (425) Hero is BTN/SB with 9 6 6

WinAmt $=4500-(3400-(125+25))=1250$
or
WinAmt $=125+25+25+250+(1100-(250+25))=1250$

LoseAmt $=1100-(125+25)=950$

Scenario A - Solution

- No Limit Hold'em Tournament - 125/250 Blinds +25
- trifluvian (BB): 1100

$$
\begin{aligned}
& M=2.59 \\
& M=8
\end{aligned}
$$

- Hero (BTN/SB): 3400
- Pre Flop: (425) Hero is BTN/SB with 9 6 6
$\mathrm{EV}=($ Pot $*$ Fold \% $)+(1-$ Fold $\%) *($ Win $\% *$ WinAmt - Lose $\% *$ LoseAmt $)$
Assume call range of $22+$, A2+, JT+ (27.60\%)
960 vs $22+$, $\mathrm{A} 2+$, $\mathrm{JT}+=34.26 \%$
EV of Fold = 0
EV of Push $=(1-27.6 \%) * 425+(27.6 \%) *[34.26 \% * 1250-65.74 \%$ *950]
EV of Push $=307.7-54.2=253.5$

Scenario A - Generalized

EV of Fold $=0$
EV of Push $=(1-\mathrm{F} \%) * 425+(\mathrm{F} \%)^{*}[\mathrm{~W} \% * 1250-(1-\mathrm{W} \%) * 950]$

Scenario A - Generalized

EV of Fold $=0$
EV of Push $=(1-\mathrm{F} \%) * 425+(\mathrm{F} \%) *[\mathrm{~W} \% * 1250-(1-\mathrm{W} \%) * 950]$

Scenario A - Generalized

EV of Fold $=0$
EV of Push $=(1-\mathrm{F} \%) * 425+(\mathrm{F} \%) *[\mathrm{~W} \% * 1250-(1-\mathrm{W} \%) * 950]$

Scenario A

- No Limit Hold'em Tournament - 125/250 Blinds +25
- trifluvian (BB): 1100

$$
\mathrm{M}=2.59
$$

- Hero (BTN/SB): 3400 $\mathrm{M}=8$
- Pre Flop: (425) Hero is BTN/SB with 94 6
- Hero pushes all-in regardless of Villain playing style
- Fold costs about 175 chips in EV
- This is worse than calling all-in with $3 \times 4 \downarrow$ vs A K .
$-1250 * 35.42 \%-950 * 64.58 \%=-171$

De-Motivator

- These push/fold decisions are not very intuitive, so we need to solve it out beforehand
- Variables that impact our decision are
- Our cards
- Our position
- Our stack
- Villain's call range
- Our goal is to develop quick rules that work
"for all call ranges" or "for any two cards" etc.

Pre-flop Analysis

- Motivator
- Range Definition
- Basic Assumptions
- Heads Up
- Other Positions

Massachusetts Institute of Technology

Range of Hands

－A range in poker is a set of hands
－Suitedness can be represented by an o or s next to the hand
－Here is PokerTracker＇s representation of 33＋，A4s＋，KTs＋， A8o＋

AA	AKs	AQs	As	ATs	A9s	A8s	A7s	A6s	A5s	A4s	A3s	A2s
AKo	KK	KQs	Kls	KTs	K9s	K8s	K7s	K6s	K5s	K4s	K3s	K2s
AQo	KQo	QQ	QJs	QTs	Q9s	Q8s	Q7s	Q6s	Q5s	Q4s	Q3s	Q2s
Ao	KJo	QJo	J	JTs	99s	18 s	775	J6s	J5s	J4s	J3s	12s
ATo	KTo	QTo	JTo	TT	T9s	T8s	T7s	T6s	T5s	T4s	T3s	T2s
A90	K9。	Q9。	190	T9。	99	985	975	96s	95s	94s	93s	925
A8o	K80	Q80	180	T80	980	88	875	86s	85s	84s	83s	825
A70	K70	Q70	170	770	970	870	77	76s	75s	74s	73s	725
A60	K60	Q60	J60	T60	960	860	760	66	65s	64s	63s	62 s
A50	K50	Q50	150	T50	950	850	750	650	55	54s	53s	52s
A40	K4o	Q4o	140	T40	940	840	740	640	540	44	43s	42 s
A30	K3o	Q30	130	T30	930	830	730	630	530	430	33	32 s
A20	K20	Q20	120	T20	920	820	720	620	520	420	320	22

Range of Hands

- A range in poker is a set of hands
- Ranges are denoted by the lowest or highest cards in a series
- For example, AA KK QQ would be written QQ^{+}
- Another example is AA KK AK AQ KQ would be written $\mathrm{KK}+, \mathrm{AQ}^{+}, \mathrm{KQ}+$
- Less commonly, the best hand in a series is written with a -
- For example, 554433225453524342 could be written 55-, 54-, 43-

Range of Hands

- We will use ranges for
- Analyzing Opponents
- Estimating equity against likely opponent cards
- e.g. if we are holding AT, we are 63% vs ATC
- Determining Our Plays
- Developing range-based rules for our plays
- e.g. we will push with AT+, $88+$ and fold otherwise

Range of Hands

- We can also map percentiles to ranges based on hand value preflop
- Most commonly we use Sklansky-Karlson rankings, based on likelihood of being ahead preflop in a 2-player hand
- Top 10 hands are AA, KK, AKs, QQ, AKo, JJ, AQs, TT, AQo, 99

David Sklansky

- David Sklansky
- Poker Theorist
- Three WSOP Bracelets
- One WPT Title
- Studied at Wharton

© flipchip on Wikimedia Commons. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
- Authored 13 books published by TwoPlusTwo Publishing
- Active member of TwoPlusTwo Poker Community

Massachusetts Institute of Technology

David Sklansky

Sklansky, D. The Theory of Poker: A Professional Poker Player
OBuy at Amazon) Teaches You How To Think Like One. Two Plus Two Pub, 1999.
 Big With Expert Play. Two Plus Two Pub, 2004.
©ByatAmzzon Sklansky, D. and M. Malmuth. Hold'em Poker: For Advanced Players. Two Plus Two Pub, 1999.

ØByatAmazon Sklansky, D. Poker, Gaming \& Life. Two Plus Two Pub, 2009.

David Sklansky

Fundamental Theorem of Poker

© flipchip on Wikimedia Commons. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Every time you play a hand differently from the way you would have played it if you could see all your opponents' cards, they gain; and every time you play your hand the same way you would have played it if you could see all their cards, they lose.

Sklansky-Karlson Rankings

- David Sklansky - Oct 04 ‘03 "Important No Limit Math Problem"
- One and two dollar blinds. You are in the small blind. Everyone folds. Your hand is A8o. Your opponent in the two dollar big blind has more money than you.
- You have only two options. Fold, or turn your cards face up and move in. He sees your A8 before he acts. You should not move in if your bankroll is above x dollars. What's x ?
$-\mathrm{x} \sim 70$

Massachusetts Institute of Technology

Sklansky-Karlson Rankings

- David Sklansky - Oct 04 ' 03 "Important No Limit Math Problem"
- $1 / 2$ Blinds, Hero is SB with A8o
- Hero bets x all in
- BB will call at $\mathrm{EV}>0$
- For simplicity, let's say BB calls at Win $\% \geq 50 \%$
- Minor differences in x will be caused by Villain's calling behavior but it will generally not impact hand rankings

Sklansky-Karlson Rankings

- David Sklansky - Oct 04 ‘03 "Important No Limit Math Problem"
- $1 / 2$ Blinds, Hero is SB with A8o
- Hero bets x all in
- BB will call at $\mathrm{EV}>0$
- For simplicity, let's say BB calls at Win $\% \geq 50 \%$
- BB calls with A8+, 22+, or 13.12\%
- Hero wins 33% vs this range

Sklansky-Karlson Rankings

- BB calls with A8+, $22+$, or 13.12%
- Hero wins 33% vs this range

Sklansky-Karlson Rankings

- David Sklansky - Oct 04 ‘03 "Important No Limit Math Problem"
- $1 / 2$ Blinds, Hero is SB with A8o
- Hero bets x all in
- BB will call at $\mathrm{EV}>0$
- For simplicity, let's say BB calls at Win $\% \geq 50 \%$
- BB calls with A8+, 22+, or 13.12\%
- Hero wins 33% vs this range
- Hero EV $=87 \%$ * $3+13 \%$ * $[33 \% * x+67 \% *-(x-1)]$
- $\mathrm{EV}=0$ at $x \approx 62$
- So at a stack of 62 or less, open-face all-in with A8o is +EV

Sklansky-Karlson Rankings

- David Sklansky - Oct 24 ‘03
- What is the rating x for all hands?
- Function of
- Number of hands you are marginally better then
- Chance of winning when you are behind
- Victor Chubukov (Karlson) - Oct 24 ‘03
- AA
∞
- KK 1290
- You can check KK with
$-0=.9955 * 3+.0045 *(.1805 * x-.8195 *(x-1))$ at $x \approx 1040$

Massachusetts Institute of Technology

Sklansky-Karlson Rankings

- David Sklansky - Oct 24 ‘03
- What is the rating x for all hands?
- Function of
- Number of hands you are marginally better then
- Chance of winning when you are behind
- Victor Chubukov (Karlson) - Oct 24 ‘03
- AA
∞
- KK 1290
- You can check KK with
$-0=.9955 * 3+.0045 *\left(.1805^{*} \mathrm{x}-.8195 *(x-1)\right)$ at $x \approx 1040$

Sklansky-Karlson Rankings

- For example, the top 1% of hands is AA
- The top 5% of hands is TT+, AQs+, AQo +
- The top 30% of hands is $22+$, A2s+, K4s+, Q9s+, JTs, A2o+, K8o+, QJo

Range of Hands

- Simplified ranges you can memorize
- TT,$+ \mathrm{AQ}+=5 \%$
- $55+$, AT $+=10 \%$
$-22+, \mathbf{A 2 +}, \mathrm{KQ}=20 \%$
$-22+$, A2+, Broadway = 30\%
- Pairs and cards adding to $16=50 \%$
- Any two cards = 100\%

Range of Hands

AA	AKs	AQs	AJs	ATs	A9s	A8s	A7s	A6s	A5s	A4s	A3s	A2s
AKo	KK	KQs	KJs	KTs	K9s	K8s	K7s	K6s	K5s	K4s	K3s	K2s
AQo	KQo	QQ	QJs	QTs	Q9s	Q8s	Q7s	Q6s	Q5s	Q4s	Q3s	Q2s
Alo	KJo	QJo	J	Js	J9s	J8s	J7s	J6s	J5s	J4s	J3s	J 2 s
ATo	KTo	QTo	Jо	TT	T9s	T8s	T7s	T6s	T5s	T4s	T3s	T2s
A9o	K90	Q9o	J90	T90	99	98s	97 s	965	95s	94s	93 s	92 s
A8o	K80	Q80	J80	T80	980	88	87s	865	85s	84s	83 s	82 s
A70	K7o	Q7o	J70	T7o	970	87o	77	765	75s	74 s	73s	72 s
A60	K60	Q60	J60	T60	960	860	760	66	$65 s$	64s	63 s	62 s
A50	K50	Q50	J50	T5o	950	850	750	650	55	54 s	53 s	52 s
A4o	K4o	Q40	J40	T4o	940	840	740	640	540	44	43 s	42 s
A30	K3o	Q3o	J3o	T3o	930	830	730	630	530	430	33	32 s
A20	K2o	Q2o	J20	T20	920	820	720	620	520	420	320	22

Massachusetts Institute of Technology

Range of Hands

$A+E V$ range for a decision is profitable on average
An optimal range the most profitable set of hands in dollar terms
For example, vs. AQ, the range $55+$, AT+ is profitable at 53% to win. But it's not optimal because AT and AJ lose to AQ

An optimal range is $22+\mathrm{AQ}^{+}$, which wins 60% of the time
If a range is optimal, then every hand in that range is +EV

Pre-flop Analysis

- Motivator
- Range Definition
- Basic Assumptions
- Heads Up
- Other Positions

Massachusetts Institute of Technology

Basic Assumptions

- Hero has effective $\mathrm{M}<10$
- Villain calling range is some top $\mathrm{x} \%$ of hands and everyone generally agrees on the order of hand rankings
- ICM doesn't matter, just cEV
- $\mathrm{M}<10$ is basically push or fold
- Why not raise? A bet of 3BB (i.e. 2 M) lets you fold to a re-raise if it's as much as 6 M (i.e. giving you pot odds of $8 / 20$ or 40%). You can fold 99- A5- K9- on a very small margin. Less than 4 M remaining gives you pot odds of 4 / 12 or 30% which is basically always a call. So maximizing fold equity is most important

Preflop Strategy

Goal - Develop optimal push/call range for Ms up to 10 in blind vs blind

1. Build table of range vs range equities
2. Derive two-factor model to estimate range vs range equities
3. Develop EV model for semi-bluffs
4. For each M, find Nash Equilibrium if one exists
5. For unstable equilibriums, find reasonable ranges

\&DFXCDMOJIMRSTI MYMRSTII

$\mathrm{TT}+, \mathrm{AQs}+, \mathrm{AQ} 0+$	59.72%
$55+, \mathrm{A} 8 \mathrm{~s}+, \mathrm{ATo}+$	40.28%

IIIIT Massachusetts Institute of Technology

Range Table

Villain's Range

	4.68\%	9.95\%	14.78\%	19.91\%	29.71\%	39.67\%	50.00\%	74.66\%	100.00\%	
4.68\%	50\%	60\%	63\%	66\%	67\%	69\%	70\%	72\%	73\%	
9.95\%	40\%	50\%	55\%	56\%	60\%	62\%	63\%	66\%	68\%	
14.78\%	37\%	45\%	50\%	52\%	56\%	58\%	60\%	63\%	65\%	Hero's Favor
19.91\%	35\%	44\%	48\%	50\%	54\%	57\%	58\%	61\%	63\%	Neutral
29.71\%	33\%	40\%	44\%	46\%	50\%	53\%	55\%	59\%	61\%	
39.67\%	31\%	38\%	42\%	43\%	47\%	50\%	52\%	57\%	60\%	Villain's Favor
50.00\%	30\%	37\%	40\%	42\%	45\%	48\%	50\%	55\%	58\%	Villain's Favor
74.66\%	28\%	34%	37\%	39\%	41\%	43\%	45\%	50\%	55\%	
100.00\%	27\%	32%	35\%	37\%	39\%	40\%	42\%	45\%	50\%	

Hero Win \% at Showdown

Hero's Range

Preflop Strategy

Goal - Develop optimal push/call range for Ms up to 10 in blind vs blind

1. Build table of range vs range equities
2. Derive two-factor model to estimate range vs range equities
3. Develop EV model for semi-bluffs
4. For each M, find Nash Equilibrium if one exists
5. For unstable equilibriums, find reasonable ranges

Range vs Range Model

Hero's Range $=$ Top 50\%

Range vs Range Model

Hero's Range $=$ Top 50\%

Range vs Range Model

Hero's Range $=$ Top 50\%

[^0]
Range vs Range Model

Hero's Range $=$ Top 30\%

[^1]
Range vs Range Model

Hero's Range $=$ Top 10%

[^2]
Range vs Range Model

Hero's Range $=$ Top 5\%

[^3]
Range vs Range Model

Hero's Range $=$ Top 3\%

[^4]
Range vs Range Model

Hero's Range = Top 1\%

[^5]
Range vs Range Model

Villain's Range = Top 50\%

Range vs Range Model

Villain's Range = Top 50\%

[^6]
Range vs Range Model

Villain's Range $=$ Top 30\%

[^7]
Range vs Range Model

Villain's Range $=$ Top 2\%

[^8]
Range vs Range Model

Takeaway - range vs range equity relationship probably logarithmic, but not good in top 5\%

Range vs Range Model

Villain's Range											
Hero's Range		4.688\%9.95\%		4.78\%/ 19.91%		9.71\% 33.67\%		50.00\%	74.6\%\%	$\begin{array}{r\|} \hline 100.00 \% \\ \hline 73 \% \\ \hline \end{array}$	Hero's Favor
	4.68\%										
	9.95\%	40%	50\%	55\%	56\%	60\%	${ }^{62 \%}$	63\%	66\%		
	19.78\%	${ }^{37 \%}$	${ }^{45 \%}$	50\%	52\%	55\%	${ }_{58 \%}^{58 \%}$	${ }^{60 \%}$	${ }^{63 \%}$	${ }^{65 \%}$	
	${ }^{19.92 \%}$	${ }^{33 \%}$	${ }^{44 \%}$	${ }_{4}^{48 \%}$	50\%	54\%	${ }_{\text {57\% }}^{53}$	${ }^{58 \%}$	${ }_{\text {69\% }}^{618}$	${ }_{618}^{63 \%}$	Neutral
	-33.67\%	${ }^{318}$	${ }^{38 \%}$	${ }^{42 \%}$	${ }^{43 \%}$	${ }^{47 \%}$	50\%	52\%	${ }^{577 \%}$	-60\%	Villain's Favor
	50.06\%	${ }^{388}$	${ }_{\text {34\% }}$	30\%\%	${ }^{\text {32\%\% }}$	${ }_{418}$	43\%	${ }^{505 \%}$	${ }^{55 \%}$		
	100.0\%	${ }^{278}$	${ }^{32 \%}$	35\%	${ }^{37 \%}$	39\%	40\%	${ }^{428 \%}$	45\%	50\%	

Massachusetts Institute of Technology

Multiple Regression

| | $4,68 \%$ | 9.95% | 14.78% | 19.91% | 29.71% | 39.67% | 50.00% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\mathbf{7 4 . 6 5 \%}|100.00 \%|$

SUMMARY OUTPUT		
Regression Statistics		
Multiple R	0.99	
R Square	0.98	
Adjusted R Square	0.98	
Standard Error	0.01	
Observations	81	
	Coefficients	
\ln nercept	0.5	
$\ln (\mathrm{H})$	(0.085)	
$\ln (\mathrm{V})$	0.085	

Massachusetts Institute of Technology

Multiple Regression

SUMMARY OUTPUT		
Regression Statistics		
Multiple R	0.99	
R Square	0.98	
Adjusted R Square	0.98	
Standard Error	0.01	
Observations	81	
Coefficients		
	0.5	
Intercept	(0.085)	
$\ln (H)$	0.085	
$\ln (V)$		

Equity Model

$\begin{aligned} \text { HeroWin } \%=50 \% & +.085 * \ln (\text { VillainRange }) \\ & -.085 * \ln (\text { HeroRange })+\varepsilon \end{aligned}$					

Error Analysis

Range vs Range Model

Two-factor logarithmic model is good estimate for range vs range preflop equities

Error is large at ranges less than 5\%, but tolerable otherwise

$$
\begin{aligned}
\text { HeroWin } \%=50 \% & +.085 * \ln (\text { VillainRange }) \\
& -.085 * \ln (\text { HeroRange })+\varepsilon
\end{aligned}
$$

Preflop Strategy

Goal - Develop optimal push/call range for Ms up to 10 in blind vs blind

1. Build table of range vs range equities
2. Derive two-factor model to estimate range vs range equities
3. Develop EV model for semi-bluffs
4. For each M, find Nash Equilibrium if one exists
5. For unstable equilibriums, find reasonable ranges

EV Equation (Semi-Bluffs)

$E V=$ FoldEquity + ShowdownValue
FoldEquity $=$ Blinds $*(1-$ VillainCall\% $)$

EV Equation (Semi-Bluffs)

$E V=$ FoldEquity + ShowdownValue
FoldEquity $=1 *(1-$ VillainCall\% $)$
ShowdownValue $=$
VillainCall\% * [SDWinAmt * HeroWin\% - SDLoseAmt * HeroLose\%]
SDWinAmt $=$ Stack $+\frac{2}{3}$
SDLoseAmt $=$ Stack
HeroWin $\%=50 \%+.085 * \ln ($ VillainCall\% $)-.085 * \ln ($ HeroPush $\%)$

EV Equation (Semi-Bluffs)

$E V=$ FoldEquity + ShowdownValue
FoldEquity $=1 *(1-$ VillainCall\% $)$
ShowdownValue $=$
VillainCall\% * [SDWinAmt * HeroWin\% - SDLoseAmt * HeroLose\%]
SDWinAmt $=$ Stack $+\frac{2}{3}$
SDLoseAmt $=$ Stack

HeroWin $\%=50 \%+.085 * \ln ($ VillainCall\%) $-.085 * \ln ($ HeroPush\% $)$

EV Equation (Semi-Bluffs)

$$
\begin{aligned}
& \text { EV }=(1-\text { VillainCall\% })+\text { VillainCall } \% *\left[\left(\operatorname{Stack}+\frac{2}{3}\right) * \text { HeroWin } \%-\text { Stack } * \text { HeroLose } \%\right] \\
& \text { HeroWin } \%=50 \%+.085 * \ln (\text { VillainCall } \%)-.085 * \ln (\text { HeroPush } \%)
\end{aligned}
$$

Massachusetts Institute of Technology

Preflop Strategy

Goal - Develop optimal push/call range for Ms up to 10 in blind vs blind

1. Build table of range vs range equities
2. Derive two-factor model to estimate range vs range equities
3. Develop EV model for semi-bluffs
4. For each M, find Nash Equilibrium if one exists
5. For unstable equilibriums, find reasonable ranges

EV when $M=20$

SB's EV (in terms of M)

		5\%
	5\%	0.05
BB	25.0\%	0.11
Picks	50.0\%	0.23
	75.0\%	0.36
	100.0\%	0.52

\square BB's Favor \square Neutral
\square SB's Favor
SB loses .49M/hand

EV when $M=20$

SB's EV (in terms

BB Wants to Minimize EV		5\%	25.0\%	50.0\%	75.0\%	100.0\%
	5\%	0.05	0.17	0.29	0.39	0.47
	25.0\%	0.11	0.21	0.13	-0.06	-0.32
	50.0\%	0.23	0.46	0.33	-0.01	-0.49
	75.0\%	0.36	0.81	0.76	0.38	-0.22
	100.0\%	0.52	1.24	1.32	0.97	0.33

\square BB's Favor $\quad \square$ Neutral \square SB's Favor

EV when $M=20$

SB Picks

		5\%	10.0\%	15.0\%	20.0\%	25.0\%	30.0\%	35.0\%	40.0\%	45.0\%	50.0\%	55.0\%	60.0\%	65.0\%	70.0\%	75.0\%	80.0\%	85.0\%	90.0\%	95.0\%	100.0\%
	5\%	0.05	0.09	0.12	0.15	0.17	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.40	0.42	0.44	0.45	0.47
	10.0\%	0.06	0.09	0.12	0.14	0.16	0.17	0.18	0.19	0.19	0.20	0.20	0.20	0.20	0.20	0.20	0.19	0.19	0.18	0.17	0.16
	15.0\%	0.07	0.11	0.14	0.15	0.16	0.17	0.17	0.16	0.16	0.15	0.14	0.12	0.11	0.09	0.07	0.05	0.03	0.00	-0.02	-0.05
	20.0\%	0.09	0.13	0.16	0.17	0.18	0.18	0.17	0.16	0.15	0.13	0.11	0.08	0.05	0.02	-0.01	-0.05	-0.08	-0.12	-0.17	-0.21
	25.0\%	0.11	0.16	0.19	0.20	0.21	0.20	0.19	0.18	0.15	0.13	0.10	0.06	0.02	-0.02	-0.06	-0.11	-0.16	-0.21	-0.27	-0.32
	30.0\%	0.13	0.19	0.22	0.24	0.25	0.24	0.23	0.20	0.18	0.14	0.11	0.06	0.02	-0.03	-0.09	-0.15	-0.21	-0.27	-0.34	-0.41
	35.0\%	0.15	0.22	0.26	0.28	0.29	0.28	0.27	0.24	0.21	0.17	0.13	0.08	0.03	-0.03	-0.09	-0.16	-0.23	-0.30	-0.38	-0.46
DP	40.0\%	0.18	0.26	0.31	0.33	0.34	0.34	0.32	0.29	0.26	0.22	0.17	0.12	0.06	-0.01	-0.08	-0.15	-0.23	-0.31	-0.40	-0.49
$D D$	45.0\%	0.20	0.30	0.35	0.38	0.40	0.39	0.38	0.35	0.32	0.27	0.22	0.16	0.10	0.03	-0.05	-0.13	-0.22	-0.31	-0.40	-0.50
	50.0\%	0.23	0.34	0.40	0.44	0.46	0.46	0.44	0.42	0.38	0.33	0.28	0.22	0.15	0.07	-0.01	-0.09	-0.19	-0.28	-0.38	-0.49
D1C	55.0\%	0.25	0.38	0.45	0.50	0.52	0.52	0.51	0.49	0.45	0.40	0.35	0.28	0.21	0.13	0.05	-0.04	-0.14	-0.24	-0.35	-0.46
P1CKN	60.0\%	0.28	0.42	0.51	0.56	0.59	0.60	0.59	0.56	0.53	0.48	0.43	0.36	0.29	0.20	0.11	0.02	-0.08	-0.19	-0.30	-0.42
	65.0\%	0.31	0.46	0.56	0.62	0.66	0.67	0.67	0.65	0.61	0.57	0.51	0.44	0.37	0.28	0.19	0.09	-0.01	-0.13	-0.24	-0.37
	70.0\%	0.34	0.51	0.62	0.69	0.73	0.75	0.75	0.74	0.70	0.66	0.60	0.54	0.46	0.37	0.28	0.18	0.07	-0.05	-0.17	-0.30
	75.0\%	0.36	0.55	0.68	0.76	0.81	0.84	0.84	0.83	0.80	0.76	0.70	0.64	0.56	0.47	0.38	0.27	0.16	0.04	-0.09	-0.22
	80.0\%	0.39	0.60	0.74	0.83	0.89	0.93	0.94	0.93	0.90	0.86	0.81	0.74	0.66	0.58	0.48	0.37	0.26	0.14	0.01	-0.13
	85.0\%	0.42	0.65	0.80	0.91	0.98	1.02	1.03	1.03	1.01	0.97	0.92	0.85	0.78	0.69	0.59	0.48	0.37	0.24	0.11	-0.03
	90.0\%	0.45	0.70	0.87	0.98	1.06	1.11	1.13	1.13	1.12	1.08	1.03	0.97	0.90	0.81	0.71	0.60	0.49	0.36	0.23	0.08
	95.0\%	0.49	0.75	0.93	1.06	1.15	1.21	1.24	1.24	1.23	1.20	1.16	1.09	1.02	0.93	0.84	0.73	0.61	0.48	0.35	0.20
	100.0\%	0.52	0.80	1.00	1.14	1.24	1.31	1.34	1.36	1.35	1.32	1.28	1.22	1.15	1.07	0.97	0.86	0.74	0.62	0.48	0.33

- BB's Favor

Neutral
SB's Favor

Massachusetts Institute of Technology

EV when $M=10$

Hero's Push Range

Villain's Call
 Range

	5\%	10.0\%	15.0\%	20.0\%	25.0\%	30.0\%	35.0\%	40.0\%	45.0\%	50.0\%	55.0\%	60.0\%	65.0\%	70.0\%	75.0\%	80.0\%	85.0\%	90.0\%	95.0\%	100.0\%
5\%	0.05	0.09	0.13	0.17	0.21	0.24	0.28	0.32	0.35	0.39	0.42	0.45	0.49	0.52	0.55	0.59	0.62	0.65	0.68	0.71
10.0\%	0.05	0.09	0.13	0.16	0.19	0.22	0.25	0.28	0.31	0.33	0.35	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.54
15.0\%	0.06	0.10	0.14	0.17	0.19	0.22	0.24	0.26	0.28	0.30	0.31	0.33	0.34	0.36	0.37	0.38	0.39	0.40	0.41	0.42
20.0\%	0.07	0.11	0.14	0.17	0.20	0.22	0.24	0.25	0.27	0.28	0.29	0.30	0.30	0.31	0.31	0.32	0.32	0.32	0.32	0.32
25.0\%	0.08	0.12	0.16	0.19	0.21	0.23	0.24	0.25	0.26	0.27	0.27	0.28	0.28	0.28	0.28	0.27	0.27	0.26	0.25	0.25
30.0\%	0.09	0.14	0.17	0.20	0.22	0.24	0.25	0.26	0.27	0.27	0.27	0.27	0.26	0.26	0.25	0.24	0.23	0.22	0.20	0.19
35.0\%	0.10	0.15	0.19	0.22	0.24	0.26	0.27	0.27	0.28	0.28	0.27	0.27	0.26	0.25	0.24	0.22	0.20	0.19	0.16	0.14
40.0\%	0.11	0.17	0.21	0.24	0.26	0.28	0.29	0.29	0.29	0.29	0.28	0.27	0.26	0.25	0.23	0.21	0.19	0.16	0.14	0.11
45.0\%	0.12	0.18	0.23	0.26	0.29	0.30	0.31	0.32	0.32	0.31	0.30	0.29	0.27	0.25	0.23	0.21	0.18	0.15	0.12	0.09
50.0\%	0.13	0.20	0.25	0.29	0.31	0.33	0.34	0.34	0.34	0.33	0.32	0.31	0.29	0.27	0.24	0.21	0.18	0.15	0.12	0.08
55.0\%	0.14	0.22	0.28	0.32	0.34	0.36	0.37	0.37	0.37	0.36	0.35	0.33	0.31	0.29	0.26	0.23	0.19	0.16	0.12	0.08
60.0\%	0.16	0.24	0.30	0.34	0.37	0.39	0.40	0.41	0.40	0.39	0.38	0.36	0.34	0.31	0.28	0.25	0.21	0.17	0.13	0.08
65.0\%	0.17	0.26	0.33	0.37	0.41	0.43	0.44	0.44	0.44	0.43	0.41	0.39	0.37	0.34	0.31	0.27	0.23	0.19	0.14	0.09
70.0\%	0.18	0.28	0.35	0.40	0.44	0.46	0.47	0.48	0.48	0.47	0.45	0.43	0.40	0.37	0.34	0.30	0.26	0.21	0.16	0.11
75.0\%	0.20	0.31	0.38	0.44	0.47	0.50	0.51	0.52	0.52	0.51	0.49	0.47	0.44	0.41	0.38	0.33	0.29	0.24	0.19	0.13
80.0\%	0.21	0.33	0.41	0.47	0.51	0.54	0.56	0.56	0.56	0.55	0.54	0.51	0.49	0.45	0.42	0.37	0.33	0.28	0.22	0.16
85.0\%	0.23	0.35	0.44	0.50	0.55	0.58	0.60	0.61	0.61	0.60	0.58	0.56	0.53	0.50	0.46	0.42	0.37	0.32	0.26	0.20
90.0\%	0.24	0.38	0.47	0.54	0.59	0.62	0.64	0.66	0.66	0.65	0.63	0.61	0.58	0.55	0.51	0.46	0.41	0.36	0.30	0.24
95.0\%	0.26	0.40	0.50	0.58	0.63	0.67	0.69	0.70	0.71	0.70	0.69	0.66	0.64	0.60	0.56	0.51	0.46	0.41	0.35	0.28
100.0\%	0.27	0.42	0.53	0.61	0.67	0.71	0.74	0.76	0.76	0.75	0.74	0.72	0.69	0.66	0.62	0.57	0.52	0.46	0.40	0.33

Massachusetts Institute of Technology

$E V$ when $M=1$

Hero's Push Range

Villain's Call
 Range

	5\%	10.0\%	15.0\%	20.0\%	25.0\%	30.0\%	35.0\%	40.0\%	45.0\%	50.0\%	55.0\%	60.0\%	65.0\%	70.0\%	75.0\%	80.0\%	85.0\%	90.0\%	95.0\%	100.0\%
5\%	0.05	0.10	0.14	0.19	0.24	0.28	0.33	0.38	0.42	0.47	0.52	0.56	0.61	0.66	0.70	0.75	0.80	0.84	0.89	0.93
10.0\%	0.05	0.09	0.14	0.18	0.23	0.27	0.32	0.36	0.41	0.45	0.49	0.54	0.58	0.62	0.67	0.71	0.75	0.80	0.84	0.88
15.0\%	0.05	0.09	0.14	0.18	0.22	0.26	0.31	0.35	0.39	0.43	0.47	0.51	0.55	0.59	0.64	0.68	0.72	0.76	0.80	0.84
20.0\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.33	0.37	0.41	0.45	0.49	0.53	0.57	0.61	0.64	0.68	0.72	0.76	0.80
25.0\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.32	0.36	0.40	0.43	0.47	0.51	0.54	0.58	0.62	0.65	0.69	0.72	0.76
30.0\%	0.05	0.09	0.13	0.17	0.20	0.24	0.28	0.31	0.35	0.38	0.42	0.45	0.49	0.52	0.55	0.59	0.62	0.66	0.69	0.72
35.0\%	0.05	0.09	0.12	0.16	0.20	0.23	0.27	0.30	0.34	0.37	0.40	0.44	0.47	0.50	0.53	0.56	0.59	0.62	0.66	0.69
40.0\%	0.05	0.09	0.12	0.16	0.19	0.23	0.26	0.29	0.33	0.36	0.39	0.42	0.45	0.48	0.51	0.54	0.57	0.60	0.62	0.65
45.0\%	0.05	0.08	0.12	0.16	0.19	0.22	0.25	0.28	0.32	0.34	0.37	0.40	0.43	0.46	0.49	0.51	0.54	0.57	0.60	0.62
50.0\%	0.05	0.08	0.12	0.15	0.19	0.22	0.25	0.28	0.31	0.33	0.36	0.39	0.41	0.44	0.47	0.49	0.52	0.54	0.57	0.59
55.0\%	0.05	0.08	0.12	0.15	0.18	0.21	0.24	0.27	0.30	0.32	0.35	0.37	0.40	0.42	0.45	0.47	0.49	0.52	0.54	0.56
60.0\%	0.05	0.08	0.12	0.15	0.18	0.21	0.23	0.26	0.29	0.31	0.34	0.36	0.38	0.41	0.43	0.45	0.47	0.49	0.51	0.53
65.0\%	0.05	0.08	0.12	0.15	0.18	0.20	0.23	0.25	0.28	0.30	0.32	0.35	0.37	0.39	0.41	0.43	0.45	0.47	0.49	0.51
70.0\%	0.05	0.08	0.12	0.15	0.17	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.41	0.43	0.45	0.46	0.48
75.0\%	0.05	0.08	0.11	0.14	0.17	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.39	0.41	0.42	0.44	0.45
80.0\%	0.05	0.08	0.11	0.14	0.17	0.19	0.21	0.24	0.26	0.27	0.29	0.31	0.33	0.34	0.36	0.37	0.39	0.40	0.41	0.43
85.0\%	0.05	0.08	0.11	0.14	0.17	0.19	0.21	0.23	0.25	0.27	0.28	0.30	0.31	0.33	0.34	0.36	0.37	0.38	0.39	0.40
90.0\%	0.05	0.08	0.11	0.14	0.16	0.18	0.21	0.22	0.24	0.26	0.27	0.29	0.30	0.31	0.33	0.34	0.35	0.36	0.37	0.38
95.0\%	0.05	0.08	0.11	0.14	0.16	0.18	0.20	0.22	0.23	0.25	0.26	0.28	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36
100.0\%	0.05	0.08	0.11	0.14	0.16	0.18	0.20	0.21	0.23	0.24	0.26	0.27	0.28	0.29	0.30	0.31	0.31	0.32	0.33	0.33

- Villain's Favor

Neutral
Hero's Favor

Massachusetts Institute of Technology

EV when M = 1 (Equilibrium)

Hero's Push Range

Hero Picks

EV when M = 2 (Equilibrium)

EV when M = 3 (Unstable Nash)

Hero's Push Range

Villain's Call Range

	55.0\%	60.0\%	65.0\%	70.0\%	75.0\%	80.0\%
55.0\%	0.35	0.36	0.38	0.39	0.40	0.42
60.0\%	0.35	0.36	0.37	0.38	0.40	0.40
65.0\%	0.34	0.36	0.37	0.38	0.39	0.39
70.0\%	0.34	0.36	0.37	0.37	0.38	0.39
75.0\%	0.35	0.35	0.36	0.37	0.38	0.38
80.0\%	0.35	0.36	0.36	0.3	9\%7	0.37
85.0\%	0.35	0.36	0.36	0.37	0.37	. 37
90.0\%	0.35	0.36	0.36	0.37	0.37	. 37
95.0\%	0.36	0.36	0.37	0.37	0.37	$\checkmark 3.36$
100.0\%	0.36	0.37	0.37	$\leftarrow 0.37$	0.37	0.36

When Hero is SB (and first to act)

Goal: Determine optimal pushing ranges for likely scenarios
Methodology: For each column, identify max EV for the following scenarios
Average Case (No info about Villain's call range)
Worst Case (Villain has best response)
Tight Villain (Assumes 15\% Calling Range) [33+,A4+,KT+]
/ RRVHVillain (Assumes 80 \% Calling Range) [22+, T2+, 93+, etc]

EV when $\mathrm{M}=1$ to 10

1M

| | 5% | 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45% | 50% | 55% | 60% | 65% | 70% | 75% | 80% | 85% | 90% | 95% | 100% |
| :--- | ---: |
| Average | 0.05 | 0.09 | 0.12 | 0.16 | 0.19 | 0.22 | 0.25 | 0.28 | 0.31 | 0.34 | 0.37 | 0.39 | 0.42 | 0.45 | 0.47 | 0.50 | 0.52 | 0.55 | 0.57 | 0.60 |
| Worst | 0.05 | 0.08 | 0.11 | 0.14 | 0.16 | 0.18 | 0.20 | 0.21 | 0.23 | 0.24 | 0.26 | 0.27 | 0.28 | 0.29 | 0.30 | 0.31 | 0.31 | 0.32 | 0.33 | 0.33 |
| Tight(15\%) | 0.05 | 0.09 | 0.14 | 0.18 | 0.22 | 0.26 | 0.31 | 0.35 | 0.39 | 0.43 | 0.47 | 0.51 | 0.55 | 0.59 | 0.64 | 0.68 | 0.72 | 0.76 | 0.80 | 0.84 |
| Loose (80%) | 0.05 | 0.08 | 0.11 | 0.14 | 0.17 | 0.19 | 0.21 | 0.24 | 0.26 | 0.27 | 0.29 | 0.31 | 0.33 | 0.34 | 0.36 | 0.37 | 0.39 | 0.40 | 0.41 | 0.43 |

EV when $\mathrm{M}=1$ to 10

1M

	5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
Average	0.05	0.09	0.12	0.16	0.19	0.22	0.25	0.28	0.31	0.34	0.37	0.39	0.42	0.45	0.47	0.50	0.52	0.55	0.57	0.60
Worst	0.05	0.08	0.11	0.14	0.16	0.18	0.20	0.21	0.23	0.24	0.26	0.27	0.28	0.29	0.30	0.31	0.31	0.32		0.33
Tight(15\%)	0.05	0.09	0.14	0.18	0.22	0.26	0.31	0.35	0.39	0.43	0.47	0.51	0.55	0.59	0.64	0.68	0.72			0.84
Losese 880	0.05	0.08	0.11	0.14	0.17	0.19	0.21	0.24	0.26	0.27	0.29	0.31	0.33	0.34	0.36	0.37	0.39	40	0.41	0.43

	5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%		90\%	95\%	10\%
Average	0.07	0.12	0.16	0.20	0.23	0.26	0.29	0.31	0.33	0.36	0.38	0.40	0.41	0.43	0.45		0.48	0.49	0.50	0.51
Worst	0.05	0.09	0.13	0.17	0.21	0.24	0.27	0.29	0.31	0.33	0.34	0.35	0.36	0.37	0.37		0.36	0.35	0.34	0.33
Tight (15\%)	0.05	0.09	0.14	0.18	0.21	0.25	0.29	0.33	0.36	0.40	0.44	0.47	0.51	0.54		0.61	0.64	0.68	0.71	0.74
Loose (80\%)	0.08	0.14	0.18	0.21	0.24	0.27	0.29	0.31	0.32	0.34	0.35	0.36	0.36	0.37		0.37	0.37	0.37	0.37	0.37

5M

	5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%		75\%	80\%	85\%	90\%	95\%	100\%
Average	0.09	0.15	0.20	0.23	0.27	0.30	0.32	0.34	0.36	0.38	0.39	0.40		42	0.42	0.43	0.43	0.43	0.43	0.43
Worst	0.05	0.09	0.13	0.17	0.21	0.24	0.27	0.29	0.31	0.33	0.34			0.36	0.36	0.36	0.35	0.34	0.33	0.31
Tight (15\%)	0.05	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34	0.37	0.40			0.49	0.52	0.54	0.57	0.60	0.62	0.65
Loose (88\%)	0.12	0.19	0.25	0.29	0.32	0.35	0.37	0.38	0.39	0.40	0.40	. 40	0.40	0.39	0.38	0.37	0.36	0.35	0.33	0.31

	5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	N\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	10\%
Average	0.14	0.23	0.29	0.33	0.37	0.39	0.41	0.42	0.42		0.42	0.41	0.40	0.38	0.36	0.34	0.32	0.29	0.26	0.23
Worst	0.05	0.09	0.13	0.16	0.19	0.22	0.24	0.25	0.26	140]	0.27	0.27	0.26	0.25	0.23	0.21	0.18	0.15	0.12	0.08
Tight(15\%)	0.06	0.10	0.14	0.17	0.19	0.22	0.24	0.26	0.28	0.30	0.31	0.33	0.34	0.36	0.37	0.38	0.39	0.40	0.41	0.42
Loose(80\%)	0.21	0.33	0.41	0.47	0.51	0.54	0.56	0.56	0.56	0.55	0.54	0.51	0.49	0.45	0.42	0.37	0.33	0.28	0.22	0.16

SB Rules of Thumb

If you think Villain is tight, top 100% is always optimal
In other scenarios, top 100% is optimal for $\mathrm{M}=1$, then optimal slowly drifts to top 50% for 10 M

The biggest mistake would be pushing less often than 50% of hands

When Hero is BB (second to act)

Goal: Determine optimal calling ranges given SB's behavior
SB will always have an edge for $\mathrm{M}<10$ because of fold equity
We want to develop a practical rule for our calling range
We want to make as few assumptions as possible

Massachusetts Institute of Technology

EV when M = 5

Villain's Push Range

	5\%	10.0\%	15.0\%	20.0\%	25.0\%	30.0\%	35.0\%	40.0\%	45.0\%	50.0\%	55.0\%	60.0\%	65.0\%	70.0\%	75.0\%	80.0\%	85.0\%	90.0\%	95.0\%	100.0\%
5\%	0.05	0.09	0.14	0.18	0.22	0.27	0.31	0.35	0.39	0.43	0.47	0.51	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.84
10.0\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.32	0.36	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73
15.0\%	0.05	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34	0.37	0.40	0.43	0.46	0.49	0.52	0.54	0.57	0.60	0.62	0.65
20.0\%	0.06	0.10	0.14	0.17	0.21	0.24	0.27	0.30	0.33	0.35	0.38	0.40	0.43	0.45	0.48	0.50	0.52	0.54	0.56	0.58
25.0\%	0.06	0.10	0.14	0.18	0.21	0.24	0.27	0.29	0.32	0.34	0.36	0.38	0.41	0.43	0.44	0.46	0.48	0.50	0.51	0.53
30.0\%	0.06	0.11	0.15	0.18	0.21	0.24	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.40	0.42	0.43	0.45	0.46	0.47	0.48
35.0\%	0.07	0.12	0.15	0.19	0.22	0.24	0.27	0.29	0.31	0.33	0.35	0.36	0.38	0.39	0.40	0.41	0.42	0.43	0.44	0.44
40.0\%	0.07	0.12	0.16	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.34	0.35	0.37	0.38	0.38	0.39	0.40	0.40	0.41	0.41
45.0\%	0.08	0.13	0.17	0.20	0.23	0.26	0.28	0.30	0.32	0.33	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.39	0.39
50.0\%	0.08	0.14	0.18	0.21	0.24	0.27	0.29	0.31	0.32	0.33	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.37	0.37	0.36
55.0\%	0.09	0.15	0.19	0.22	0.25	0.28	0.30	0.31	0.33	0.34	0.35	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.35	0.35
60.0\%	0.10	0.15	0.20	0.24	0.27	0.29	0.31	0.33	0.34	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.35	0.35	0.34	0.33
65.0\%	0.10	0.16	0.21	0.25	0.28	0.30	0.32	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.36	0.36	0.35	0.34	0.33	0.32
70.0\%	0.11	0.17	0.22	0.26	0.29	0.32	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.37	0.37	0.36	0.35	0.34	0.33	0.31
75.0\%	0.11	0.18	0.23	0.27	0.31	0.33	0.35	0.37	0.38	0.38	0.39	0.39	0.39	0.38	0.38	0.37	0.36	0.34	0.33	0.31
80.0\%	0.12	0.19	0.25	0.29	0.32	0.35	0.37	0.38	0.39	0.40	0.40	0.40	0.40	0.39	0.38	0.37	0.36	0.35	0.33	0.31
85.0\%	0.13	0.20	0.26	0.30	0.34	0.36	0.38	0.40	0.41	0.41	0.42	0.42	0.41	0.40	0.39	0.38	0.37	0.35	0.33	0.31
90.0\%	0.13	0.21	0.27	0.32	0.35	0.38	0.40	0.42	0.43	0.43	0.43	0.43	0.43	0.42	0.41	0.39	0.38	0.36	0.34	0.32
95.0\%	0.14	0.22	0.29	0.33	0.37	0.40	0.42	0.43	0.44	0.45	0.45	0.45	0.44	0.43	0.42	0.41	0.39	0.37	0.35	0.32
100.0\%	0.15	0.23	0.30	0.35	0.39	0.42	0.44	0.45	0.46	0.47	0.47	0.47	0.46	0.45	0.44	0.42	0.40	0.38	0.36	0.33

Hero's Favor
Neutral
Villain's Favor

EV when M = 5 (steeper gradient)

Villain's Push Range

Hero's
Call
Range

	5\%	10.0\%	15.0\%	20.0\%	25.0\%	30.0\%	35.0\%	40.0\%	45.0\%	50.0\%	55.0\%	60.0\%	65.0\%	70.0\%	75.0\%	80.0\%	85.0\%	90.0\%	95.0\%	100.0\%
5\%	0.05	0.09	0.14	0.18	0.22	0.27	0.31	0.35	0.39	0.43	0.47	0.51	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.84
10.0\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.32	0.36	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73
15.0\%	0.05	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34	0.37	0.40	0.43	0.46	0.49	0.52	0.54	0.57	0.60	0.62	0.65
20.0\%	0.06	0.10	0.14	0.17	0.21	0.24	0.27	0.30	0.33	0.35	0.38	0.40	0.43	0.45	0.48	0.50	0.52	0.54	0.56	0.58
25.0\%	0.06	0.10	0.14	0.18	0.21	0.24	0.27	0.29	0.32	0.34	0.36	0.38	0.41	0.43	0.44	0.46	0.48	0.50	0.51	0.53
30.0\%	0.06	0.11	0.15	0.18	0.21	0.24	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.40	0.42	0.43	0.45	0.46	0.47	0.48
35.0\%	0.07	0.12	0.15	0.19	0.22	0.24	0.27	0.29	0.31	0.33	0.35	0.36	0.38	0.39	0.40	0.41	0.42	0.43	0.44	0.44
40.0\%	0.07	0.12	0.16	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.34	0.35	0.37	0.38	0.38	0.39	0.40	0.40	0.41	0.41
45.0\%	0.08	0.13	0.17	0.20	0.23	0.26	0.28	0.30	0.32	0.33	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.39	0.39
50.0\%	0.08	0.14	0.18	0.21	0.24	0.27	0.29	0.31	0.32	0.33	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.37	0.37	0.36
55.0\%	0.09	0.15	0.19	0.22	0.25	0.28	0.30	0.31	0.33	0.34	0.35	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.35	0.35
60.0\%	0.10	0.15	0.20	0.24	0.27	0.29	0.31	0.33	0.34	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.35	0.35	0.34	0.33
65.0\%	0.10	0.16	0.21	0.25	0.28	0.30	0.32	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.36	0.36	0.35	0.34	0.33	0.32
70.0\%	0.11	0.17	0.22	0.26	0.29	0.32	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.37	0.37	0.36	0.35	0.34	0.33	0.31
75.0\%	0.11	0.18	0.23	0.27	0.31	0.33	0.35	0.37	0.38	0.38	0.39	0.39	0.39	0.38	0.38	0.37	0.36	0.34	0.33	0.31
80.0\%	0.12	0.19	0.25	0.29	0.32	0.35	0.37	0.38	0.39	0.40	0.40	0.40	0.40	0.39	0.38	0.37	0.36	0.35	0.33	0.31
85.0\%	0.13	0.20	0.26	0.30	0.34	0.36	0.38	0.40	0.41	0.41	0.42	0.42	0.41	0.40	0.39	0.38	0.37	0.35	0.33	0.31
90.0\%	0.13	0.21	0.27	0.32	0.35	0.38	0.40	0.42	0.43	0.43	0.43	0.43	0.43	0.42	0.41	0.39	0.38	0.36	0.34	0.32
95.0\%	0.14	0.22	0.29	0.33	0.37	0.40	0.42	0.43	0.44	0.45	0.45	0.45	0.44	0.43	0.42	0.41	0.39	0.37	0.35	0.32
100.0\%	0.15	0.23	0.30	0.35	0.39	0.42	0.44	0.45	0.46	0.47	0.47	0.47	0.46	0.45	0.44	0.42	0.40	0.38	0.36	0.33

Massachusetts Institute of Technology

EV when $\mathrm{M}=1$

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.10	0.14	0.19	0.24	0.28	0.33	0.38	0.42	0.47	0.52	0.56	0.61	0.66	0.70	0.75	0.80	0.84	0.89	0.93
	10\%	0.05	0.09	0.14	0.18	0.23	0.27	0.32	0.36	0.41	0.45	0.49	0.54	0.58	0.62	0.67	0.71	0.75	0.80	0.84	0.88
	15\%	0.05	0.09	0.14	0.18	0.22	0.26	0.31	0.35	0.39	0.43	0.47	0.51	0.55	0.59	0.64	0.68	0.72	0.76	0.80	0.84
	20\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.33	0.37	0.41	0.45	0.49	0.53	0.57	0.61	0.64	0.68	0.72	0.76	0.80
	25\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.32	0.36	0.40	0.43	0.47	0.51	0.54	0.58	0.62	0.65	0.69	0.72	0.76
T	30\%	0.05	0.09	0.13	0.17	0.20	0.24	0.28	0.31	0.35	0.38	0.42	0.45	0.49	0.52	0.55	0.59	0.62	0.66	0.69	0.72
Hero	35\%	0.05	0.09	0.12	0.16	0.20	0.23	0.27	0.30	0.34	0.37	0.40	0.44	0.47	0.50	0.53	0.56	0.59	0.62	0.66	0.69
	40\%	0.05	0.09	0.12	0.16	0.19	0.23	0.26	0.29	0.33	0.36	0.39	0.42	0.45	0.48	0.51	0.54	0.57	0.60	0.62	0.65
	45\%	0.05	0.08	0.12	0.16	0.19	0.22	0.25	0.28	0.32	0.34	0.37	0.40	0.43	0.46	0.49	0.51	0.54	0.57	0.60	0.62
-	50\%	0.05	0.08	0.12	0.15	0.19	0.22	0.25	0.28	0.31	0.33	0.36	0.39	0.41	0.44	0.47	0.49	0.52	0.54	0.57	0.59
	55\%	0.05	0.08	0.12	0.15	0.18	0.21	0.24	0.27	0.30	0.32	0.35	0.37	0.40	0.42	0.45	0.47	0.49	0.52	0.54	0.56
	60\%	0.05	0.08	0.12	0.15	0.18	0.21	0.23	0.26	0.29	0.31	0.34	0.36	0.38	0.41	0.43	0.45	0.47	0.49	0.51	0.53
91 O	65\%	0.05	0.08	0.12	0.15	0.18	0.20	0.23	0.25	0.28	0.30	0.32	0.35	0.37	0.39	0.41	0.43	0.45	0.47	0.49	0.51
1 Male	70\%	0.05	0.08	0.12	0.15	0.17	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.41	0.43	0.45	0.46	0.48
	75\%	0.05	0.08	0.11	0.14	0.17	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.39	0.41	0.42	0.44	0.45
	80\%	0.05	0.08	0.11	0.14	0.17	0.19	0.21	0.24	0.26	0.27	0.29	0.31	0.33	0.34	0.36	0.37	0.39	0.40	0.41	0.43
	85\%	0.05	0.08	0.11	0.14	0.17	0.19	0.21	0.23	0.25	0.27	0.28	0.30	0.31	0.33	0.34	0.36	0.37	0.38	0.39	0.40
	90\%	0.05	0.08	0.11	0.14	0.16	0.18	0.21	0.22	0.24	0.26	0.27	0.29	0.30	0.31	0.33	0.34	0.35	0.36	0.37	0.38
	95\%	0.05	0.08	0.11	0.14	0.16	0.18	0.20	0.22	0.23	0.25	0.26	0.28	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36
	100\%	0.05	0.08	0.11	0.14	0.16	0.18	0.20	0.21	0.23	0.24	0.26	0.27	0.28	0.29	0.30	0.31	0.31	0.32	0.33	0.33

EV when M = 2

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.10	0.14	0.19	0.23	0.28	0.33	0.37	0.42	0.46	0.51	0.55	0.60	0.64	0.69	0.73	0.78	0.82	0.86	0.91
	10\%	0.05	0.09	0.14	0.18	0.22	0.27	0.31	0.35	0.39	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.85
	15\%	0.05	0.09	0.14	0.18	0.22	0.26	0.30	0.34	0.38	0.42	0.45	0.49	0.53	0.57	0.61	0.64	0.68	0.72	0.75	0.79
	20\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.33	0.36	0.40	0.43	0.47	0.50	0.54	0.57	0.61	0.64	0.68	0.71	0.74
	25\%	0.05	0.09	0.13	0.17	0.21	0.24	0.28	0.32	0.35	0.38	0.42	0.45	0.48	0.51	0.55	0.58	0.61	0.64	0.67	0.70
TT ${ }^{9}$	30\%	0.05	0.09	0.13	0.17	0.21	0.24	0.27	0.31	0.34	0.37	0.40	0.43	0.46	0.49	0.52	0.55	0.58	0.61	0.63	0.66
-1er0	35\%	0.05	0.09	0.13	0.17	0.20	0.24	0.27	0.30	0.33	0.36	0.39	0.42	0.44	0.47	0.50	0.52	0.55	0.58	0.60	0.63
	40\%	0.05	0.09	0.13	0.17	0.20	0.23	0.26	0.29	0.32	0.35	0.38	0.40	0.43	0.45	0.48	0.50	0.53	0.55	0.57	0.59
	45\%	0.05	0.10	0.13	0.17	0.20	0.23	0.26	0.29	0.32	0.34	0.37	0.39	0.41	0.44	0.46	0.48	0.50	0.52	0.54	0.56
-	50\%	0.06	0.10	0.13	0.17	0.20	0.23	0.26	0.28	0.31	0.33	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.53
	55\%	0.06	0.10	0.14	0.17	0.20	0.23	0.26	0.28	0.30	0.33	0.35	0.37	0.39	0.41	0.43	0.44	0.46	0.48	0.49	0.51
	60\%	0.06	0.10	0.14	0.17	0.20	0.23	0.25	0.28	0.30	0.32	0.34	0.36	0.38	0.40	0.41	0.43	0.44	0.46	0.47	0.48
\square	65\%	0.06	0.10	0.14	0.17	0.20	0.23	0.25	0.28	0.30	0.32	0.33	0.35	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46
-	70\%	0.06	0.11	0.14	0.17	0.20	0.23	0.25	0.27	0.29	0.31	0.33	0.34	0.36	0.37	0.39	0.40	0.41	0.42	0.43	0.44
	75\%	0.06	0.11	0.14	0.18	0.20	0.23	0.25	0.27	0.29	0.31	0.32	0.34	0.35	0.36	0.38	0.39	0.39	0.40	0.41	0.42
	80\%	0.07	0.11	0.15	0.18	0.21	0.23	0.25	0.27	0.29	0.31	0.32	0.33	0.34	0.36	0.36	0.37	0.38	0.39	0.39	0.40
	85\%	0.07	0.11	0.15	0.18	0.21	0.23	0.25	0.27	0.29	0.30	0.32	0.33	0.34	0.35	0.36	0.36	0.37	0.37	0.38	0.38
	90\%	0.07	0.12	0.15	0.18	0.21	0.23	0.25	0.27	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.35	0.36	0.36	0.36	0.36
	95\%	0.07	0.12	0.16	0.19	0.21	0.24	0.26	0.27	0.29	0.30	0.31	0.32	0.33	0.33	0.34	0.34	0.35	0.35	0.35	0.35
	100\%	0.07	0.12	0.16	0.19	0.22	0.24	0.26	0.27	0.29	0.30	0.31	0.32	0.32	0.33	0.33	0.34	0.34	0.34	0.34	0.33

Massachusetts Institute of Technology

EV when M = 3

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.14	0.19	0.23	0.28	0.32	0.36	0.41	0.45	0.50	0.54	0.58	0.63	0.67	0.71	0.76	0.80	0.84	0.88
	10\%	0.05	0.09	0.14	0.18	0.22	0.26	0.30	0.34	0.38	0.42	0.46	0.50	0.54	0.58	0.62	0.66	0.69	0.73	0.77	0.81
	15\%	0.05	0.09	0.14	0.18	0.21	0.25	0.29	0.33	0.36	0.40	0.44	0.47	0.51	0.54	0.58	0.61	0.64	0.68	0.71	0.74
	20\%	0.05	0.09	0.13	0.17	0.21	0.25	0.28	0.32	0.35	0.38	0.42	0.45	0.48	0.51	0.54	0.57	0.60	0.63	0.66	0.69
	25\%	0.05	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34	0.37	0.40	0.43	0.46	0.48	0.51	0.54	0.57	0.59	0.62	0.64
TT ${ }^{9}$	30\%	0.05	0.10	0.14	0.17	0.21	0.24	0.27	0.30	0.33	0.36	0.39	0.41	0.44	0.46	0.49	0.51	0.53	0.56	0.58	0.60
-1er0	35\%	0.06	0.10	0.14	0.17	0.21	0.24	0.27	0.30	0.32	0.35	0.37	0.40	0.42	0.44	0.47	0.49	0.51	0.53	0.55	0.57
	40\%	0.06	0.10	0.14	0.18	0.21	0.24	0.27	0.29	0.32	0.34	0.36	0.39	0.41	0.43	0.45	0.47	0.48	0.50	0.52	0.53
	45\%	0.06	0.11	0.15	0.18	0.21	0.24	0.27	0.29	0.32	0.34	0.36	0.38	0.40	0.41	0.43	0.45	0.46	0.48	0.49	0.50
-	50\%	0.06	0.11	0.15	0.18	0.21	0.24	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.40	0.42	0.43	0.44	0.46	0.47	0.48
	55\%	0.07	0.11	0.15	0.19	0.22	0.24	0.27	0.29	0.31	0.33	0.35	0.36	0.38	0.39	0.40	0.42	0.43	0.44	0.45	0.45
	60\%	0.07	0.12	0.16	0.19	0.22	0.25	0.27	0.29	0.31	0.33	0.35	0.36	0.37	0.38	0.40	0.40	0.41	0.42	0.43	0.43
\square	65\%	0.07	0.12	0.16	0.20	0.23	0.25	0.28	0.30	0.31	0.33	0.34	0.36	0.37	0.38	0.39	0.39	0.40	0.41	0.41	0.41
-	70\%	0.08	0.13	0.17	0.20	0.23	0.26	0.28	0.30	0.32	0.33	0.34	0.36	0.37	0.37	0.38	0.39	0.39	0.39	0.40	0.40
	75\%	0.08	0.13	0.17	0.21	0.24	0.26	0.28	0.30	0.32	0.33	0.35	0.35	0.36	0.37	0.38	0.38	0.38	0.38	0.38	0.38
	80\%	0.08	0.14	0.18	0.21	0.24	0.27	0.29	0.31	0.32	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.37	0.37	0.37	0.37
	85\%	0.09	0.14	0.19	0.22	0.25	0.28	0.30	0.31	0.33	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.37	0.37	0.36	0.36
	90\%	0.09	0.15	0.19	0.23	0.26	0.28	0.30	0.32	0.33	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.36	0.36	0.35	0.35
	95\%	0.09	0.15	0.20	0.24	0.27	0.29	0.31	0.33	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.36	0.36	0.36	0.35	0.34
	100\%	0.10	0.16	0.21	0.24	0.27	0.30	0.32	0.33	0.35	0.36	0.36	0.37	0.37	0.37	0.37	0.36	0.36	0.35	0.34	0.33

Massachusetts Institute of Technology

EV when M = 4

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.14	0.18	0.23	0.27	0.31	0.36	0.40	0.44	0.48	0.53	0.57	0.61	0.65	0.69	0.74	0.78	0.82	0.86
	10\%	0.05	0.09	0.14	0.18	0.22	0.26	0.30	0.33	0.37	0.41	0.45	0.48	0.52	0.56	0.59	0.63	0.66	0.70	0.73	0.77
	15\%	0.05	0.09	0.14	0.17	0.21	0.25	0.28	0.32	0.35	0.39	0.42	0.45	0.48	0.51	0.55	0.58	0.61	0.64	0.67	0.70
	20\%	0.05	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34	0.37	0.40	0.43	0.45	0.48	0.51	0.54	0.56	0.59	0.61	0.64
	25\%	0.06	0.10	0.14	0.17	0.21	0.24	0.27	0.30	0.33	0.36	0.38	0.41	0.43	0.46	0.48	0.50	0.52	0.54	0.57	0.59
TT ${ }^{\text {9 }}$	30\%	0.06	0.10	0.14	0.18	0.21	0.24	0.27	0.30	0.32	0.35	0.37	0.39	0.41	0.43	0.45	0.47	0.49	0.51	0.53	0.54
-1er0	35\%	0.06	0.11	0.15	0.18	0.21	0.24	0.27	0.29	0.32	0.34	0.36	0.38	0.40	0.42	0.43	0.45	0.46	0.48	0.49	0.51
	40\%	0.07	0.11	0.15	0.19	0.22	0.24	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.40	0.42	0.43	0.44	0.45	0.46	0.47
	45\%	0.07	0.12	0.16	0.19	0.22	0.25	0.27	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	0.41	0.42	0.43	0.44	0.44
-	50\%	0.07	0.12	0.16	0.20	0.23	0.25	0.28	0.30	0.32	0.33	0.35	0.36	0.37	0.38	0.39	0.40	0.41	0.41	0.42	0.42
	55\%	0.08	0.13	0.17	0.21	0.24	0.26	0.28	0.30	0.32	0.34	0.35	0.36	0.37	0.38	0.38	0.39	0.39	0.40	0.40	0.40
	60\%	0.08	0.14	0.18	0.21	0.24	0.27	0.29	0.31	0.33	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.38	0.38	0.38
\square	65\%	0.09	0.14	0.19	0.22	0.25	0.28	0.30	0.32	0.33	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.37	0.37	0.37
-	70\%	0.09	0.15	0.20	0.23	0.26	0.29	0.31	0.32	0.34	0.35	0.36	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.36	0.36
	75\%	0.10	0.16	0.20	0.24	0.27	0.30	0.32	0.33	0.35	0.36	0.37	0.37	0.37	0.38	0.38	0.37	0.37	0.36	0.36	0.35
	80\%	0.10	0.17	0.21	0.25	0.28	0.31	0.33	0.34	0.36	0.37	0.37	0.38	0.38	0.38	0.38	0.37	0.37	0.36	0.35	0.34
	85\%	0.11	0.17	0.22	0.26	0.29	0.32	0.34	0.36	0.37	0.38	0.38	0.39	0.39	0.39	0.38	0.38	0.37	0.36	0.35	0.34
	90\%	0.11	0.18	0.23	0.27	0.31	0.33	0.35	0.37	0.38	0.39	0.39	0.40	0.40	0.39	0.39	0.38	0.37	0.36	0.35	0.33
	95\%	0.12	0.19	0.24	0.28	0.32	0.34	0.36	0.38	0.39	0.40	0.40	0.41	0.41	0.40	0.39	0.39	0.38	0.36	0.35	0.33
	100\%	0.12	0.20	0.25	0.30	0.33	0.36	0.38	0.39	0.41	0.41	0.42	0.42	0.42	0.41	0.40	0.39	0.38	0.37	0.35	0.33

Massachusetts Institute of Technology

EV when M = 5

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.14	0.18	0.22	0.27	0.31	0.35	0.39	0.43	0.47	0.51	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.84
	10\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.32	0.36	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.63	0.67	0.70	0.73
	15\%	0.05	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34	0.37	0.40	0.43	0.46	0.49	0.52	0.54	0.57	0.60	0.62	0.65
	20\%	0.06	0.10	0.14	0.17	0.21	0.24	0.27	0.30	0.33	0.35	0.38	0.40	0.43	0.45	0.48	0.50	0.52	0.54	0.56	0.58
	25\%	0.06	0.10	0.14	0.18	0.21	0.24	0.27	0.29	0.32	0.34	0.36	0.38	0.41	0.43	0.44	0.46	0.48	0.50	0.51	0.53
	30\%	0.06	0.11	0.15	0.18	0.21	0.24	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.40	0.42	0.43	0.45	0.46	0.47	0.48
11	35\%	0.07	0.12	0.15	0.19	0.22	0.24	0.27	0.29	0.31	0.33	0.35	0.36	0.38	0.39	0.40	0.41	0.42	0.43	0.44	0.44
	40\%	0.07	0.12	0.16	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.34	0.35	0.37	0.38	0.38	0.39	0.40	0.40	0.41	0.41
	45\%	0.08	0.13	0.17	0.20	0.23	0.26	0.28	0.30	0.32	0.33	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.39	0.39
入	50\%	0.08	0.14	0.18	0.21	0.24	0.27	0.29	0.31	0.32	0.33	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.37	0.37	0.36
	55\%	0.09	0.15	0.19	0.22	0.25	0.28	0.30	0.31	0.33	0.34	0.35	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.35	0.35
	60\%	0.10	0.15	0.20	0.24	0.27	0.29	0.31	0.33	0.34	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.35	0.35	0.34	0.33
anor	65\%	0.10	0.16	0.21	0.25	0.28	0.30	0.32	0.34	0.35	0.36	0.36	0.37	0.37	0.37	0.36	0.36	0.35	0.34	0.33	0.32
-	70\%	0.11	0.17	0.22	0.26	0.29	0.32	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.37	0.37	0.36	0.35	0.34	0.33	0.31
	75\%	0.11	0.18	0.23	0.27	0.31	0.33	0.35	0.37	0.38	0.38	0.39	0.39	0.39	0.38	0.38	0.37	0.36	0.34	0.33	0.31
	80\%	0.12	0.19	0.25	0.29	0.32	0.35	0.37	0.38	0.39	0.40	0.40	0.40	0.40	0.39	0.38	0.37	0.36	0.35	0.33	0.31
	85\%	0.13	0.20	0.26	0.30	0.34	0.36	0.38	0.40	0.41	0.41	0.42	0.42	0.41	0.40	0.39	0.38	0.37	0.35	0.33	0.31
	90\%	0.13	0.21	0.27	0.32	0.35	0.38	0.40	0.42	0.43	0.43	0.43	0.43	0.43	0.42	0.41	0.39	0.38	0.36	0.34	0.32
	95\%	0.14	0.22	0.29	0.33	0.37	0.40	0.42	0.43	0.44	0.45	0.45	0.45	0.44	0.43	0.42	0.41	0.39	0.37	0.35	0.32
	100\%	0.15	0.23	0.30	0.35	0.39	0.42	0.44	0.45	0.46	0.47	0.47	0.47	0.46	0.45	0.44	0.42	0.40	0.38	0.36	0.33

Massachusetts Institute of Technology

EV when M = 6

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.14	0.18	0.22	0.26	0.30	0.34	0.38	0.42	0.46	0.50	0.54	0.58	0.62	0.66	0.70	0.73	0.77	0.81
	10\%	0.05	0.09	0.13	0.17	0.21	0.25	0.28	0.32	0.35	0.38	0.42	0.45	0.48	0.51	0.54	0.57	0.60	0.63	0.66	0.69
	15\%	0.05	0.10	0.14	0.17	0.21	0.24	0.27	0.30	0.33	0.36	0.38	0.41	0.44	0.46	0.49	0.51	0.54	0.56	0.58	0.60
	20\%	0.06	0.10	0.14	0.17	0.21	0.23	0.26	0.29	0.31	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.53
	25\%	0.06	0.11	0.14	0.18	0.21	0.24	0.26	0.28	0.31	0.33	0.35	0.36	0.38	0.40	0.41	0.42	0.44	0.45	0.46	0.47
TT	30\%	0.07	0.11	0.15	0.19	0.21	0.24	0.26	0.28	0.30	0.32	0.34	0.35	0.36	0.37	0.39	0.40	0.40	0.41	0.42	0.42
Heros	35\%	0.07	0.12	0.16	0.19	0.22	0.25	0.27	0.29	0.30	0.32	0.33	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.38
	40\%	0.08	0.13	0.17	0.20	0.23	0.26	0.28	0.29	0.31	0.32	0.33	0.34	0.35	0.35	0.35	0.36	0.36	0.36	0.35	0.35
	45\%	0.09	0.14	0.18	0.22	0.24	0.27	0.29	0.30	0.32	0.33	0.33	0.34	0.34	0.35	0.35	0.34	0.34	0.34	0.33	0.33
-	50\%	0.09	0.15	0.19	0.23	0.26	0.28	0.30	0.31	0.32	0.33	0.34	0.34	0.34	0.34	0.34	0.34	0.33	0.32	0.32	0.31
	55\%	0.10	0.16	0.21	0.24	0.27	0.29	0.31	0.33	0.34	0.34	0.35	0.35	0.35	0.35	0.34	0.34	0.33	0.32	0.30	0.29
	60\%	0.11	0.17	0.22	0.26	0.29	0.31	0.33	0.34	0.35	0.36	0.36	0.36	0.36	0.35	0.35	0.34	0.33	0.31	0.30	0.28
入	65\%	0.12	0.18	0.23	0.27	0.30	0.33	0.34	0.36	0.37	0.37	0.37	0.37	0.37	0.36	0.35	0.34	0.33	0.31	0.29	0.28
-	70\%	0.12	0.19	0.25	0.29	0.32	0.35	0.36	0.38	0.38	0.39	0.39	0.39	0.38	0.37	0.36	0.35	0.33	0.32	0.30	0.27
	75\%	0.13	0.21	0.26	0.31	0.34	0.36	0.38	0.40	0.40	0.41	0.41	0.40	0.40	0.39	0.38	0.36	0.34	0.32	0.30	0.28
	80\%	0.14	0.22	0.28	0.32	0.36	0.38	0.40	0.42	0.43	0.43	0.43	0.42	0.42	0.40	0.39	0.37	0.35	0.33	0.31	0.28
	85\%	0.15	0.23	0.29	0.34	0.38	0.41	0.43	0.44	0.45	0.45	0.45	0.44	0.44	0.42	0.41	0.39	0.37	0.34	0.32	0.29
	90\%	0.16	0.25	0.31	0.36	0.40	0.43	0.45	0.46	0.47	0.48	0.47	0.47	0.46	0.44	0.43	0.41	0.39	0.36	0.33	0.30
	95\%	0.16	0.26	0.33	0.38	0.42	0.45	0.47	0.49	0.50	0.50	0.50	0.49	0.48	0.47	0.45	0.43	0.41	0.38	0.35	0.32
	100\%	0.17	0.27	0.35	0.40	0.44	0.48	0.50	0.51	0.52	0.53	0.53	0.52	0.51	0.49	0.47	0.45	0.43	0.40	0.37	0.33

Massachusetts Institute of Technology

EV when $\mathrm{M}=7$

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.14	0.18	0.22	0.26	0.30	0.34	0.38	0.41	0.45	0.49	0.53	0.57	0.60	0.64	0.68	0.71	0.75	0.79
	10\%	0.05	0.09	0.13	0.17	0.21	0.24	0.27	0.31	0.34	0.37	0.40	0.43	0.46	0.49	0.52	0.55	0.57	0.60	0.63	0.66
	15\%	0.05	0.10	0.14	0.17	0.20	0.23	0.26	0.29	0.32	0.34	0.37	0.39	0.41	0.44	0.46	0.48	0.50	0.52	0.54	0.56
	20\%	0.06	0.10	0.14	0.17	0.20	0.23	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40	0.41	0.43	0.44	0.45	0.47	0.48
	25\%	0.07	0.11	0.15	0.18	0.21	0.23	0.26	0.28	0.30	0.31	0.33	0.34	0.35	0.37	0.38	0.39	0.40	0.40	0.41	0.42
	30\%	0.07	0.12	0.16	0.19	0.22	0.24	0.26	0.28	0.29	0.31	0.32	0.33	0.34	0.35	0.35	0.36	0.36	0.36	0.36	0.37
11	35\%	0.08	0.13	0.17	0.20	0.23	0.25	0.27	0.28	0.30	0.31	0.32	0.32	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.32
	40\%	0.09	0.14	0.18	0.21	0.24	0.26	0.28	0.29	0.30	0.31	0.32	0.32	0.32	0.32	0.32	0.32	0.31	0.31	0.30	0.29
	45\%	0.09	0.15	0.19	0.23	0.25	0.28	0.29	0.31	0.32	0.32	0.33	0.33	0.33	0.32	0.32	0.31	0.30	0.29	0.28	0.27
入	50\%	0.10	0.16	0.21	0.24	0.27	0.29	0.31	0.32	0.33	0.33	0.34	0.33	0.33	0.32	0.32	0.31	0.30	0.28	0.27	0.25
	55\%	0.11	0.18	0.22	0.26	0.29	0.31	0.33	0.34	0.34	0.35	0.35	0.35	0.34	0.33	0.32	0.31	0.29	0.28	0.26	0.24
	60\%	0.12	0.19	0.24	0.28	0.31	0.33	0.35	0.36	0.36	0.37	0.36	0.36	0.35	0.34	0.33	0.31	0.30	0.28	0.25	0.23
anor	65\%	0.13	0.20	0.26	0.30	0.33	0.35	0.37	0.38	0.38	0.39	0.38	0.38	0.37	0.36	0.34	0.32	0.30	0.28	0.26	0.23
-	70\%	0.14	0.22	0.27	0.32	0.35	0.37	0.39	0.40	0.41	0.41	0.41	0.40	0.39	0.37	0.36	0.34	0.31	0.29	0.26	0.23
	75\%	0.15	0.23	0.29	0.34	0.37	0.40	0.42	0.43	0.43	0.43	0.43	0.42	0.41	0.39	0.38	0.35	0.33	0.30	0.27	0.24
	80\%	0.16	0.25	0.31	0.36	0.40	0.42	0.44	0.45	0.46	0.46	0.46	0.45	0.43	0.42	0.40	0.37	0.35	0.32	0.29	0.25
	85\%	0.17	0.26	0.33	0.38	0.42	0.45	0.47	0.48	0.49	0.49	0.48	0.47	0.46	0.44	0.42	0.40	0.37	0.34	0.30	0.27
	90\%	0.18	0.28	0.35	0.41	0.45	0.48	0.50	0.51	0.52	0.52	0.51	0.50	0.49	0.47	0.45	0.42	0.39	0.36	0.32	0.29
	95\%	0.19	0.29	0.37	0.43	0.47	0.51	0.53	0.54	0.55	0.55	0.55	0.54	0.52	0.50	0.48	0.45	0.42	0.39	0.35	0.31
	100\%	0.20	0.31	0.39	0.45	0.50	0.53	0.56	0.57	0.58	0.58	0.58	0.57	0.55	0.53	0.51	0.48	0.45	0.41	0.38	0.33

Massachusetts Institute of Technology

EV when M = 8

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.33	0.37	0.40	0.44	0.48	0.51	0.55	0.59	0.62	0.66	0.69	0.73	0.76
	10\%	0.05	0.09	0.13	0.17	0.20	0.23	0.27	0.30	0.33	0.36	0.39	0.41	0.44	0.47	0.49	0.52	0.54	0.57	0.59	0.62
	15\%	0.06	0.10	0.14	0.17	0.20	0.23	0.25	0.28	0.30	0.33	0.35	0.37	0.39	0.41	0.43	0.45	0.46	0.48	0.50	0.51
	20\%	0.06	0.11	0.14	0.17	0.20	0.23	0.25	0.27	0.29	0.31	0.32	0.34	0.35	0.37	0.38	0.39	0.40	0.41	0.42	0.43
	25\%	0.07	0.11	0.15	0.18	0.21	0.23	0.25	0.27	0.28	0.30	0.31	0.32	0.33	0.34	0.34	0.35	0.35	0.36	0.36	0.36
	30\%	0.08	0.13	0.16	0.19	0.22	0.24	0.26	0.27	0.29	0.30	0.30	0.31	0.31	0.32	0.32	0.32	0.32	0.31	0.31	0.31
11	35\%	0.08	0.14	0.18	0.21	0.23	0.25	0.27	0.28	0.29	0.30	0.30	0.31	0.31	0.30	0.30	0.30	0.29	0.28	0.27	0.26
	40\%	0.09	0.15	0.19	0.22	0.25	0.27	0.28	0.29	0.30	0.31	0.31	0.31	0.30	0.30	0.29	0.28	0.27	0.26	0.25	0.23
Ω	45\%	0.10	0.16	0.21	0.24	0.27	0.28	0.30	0.31	0.32	0.32	0.32	0.31	0.31	0.30	0.29	0.28	0.26	0.25	0.23	0.21
-	50\%	0.11	0.18	0.22	0.26	0.29	0.30	0.32	0.33	0.33	0.33	0.33	0.33	0.32	0.31	0.29	0.28	0.26	0.24	0.22	0.19
	55\%	0.12	0.19	0.24	0.28	0.31	0.33	0.34	0.35	0.35	0.35	0.35	0.34	0.33	0.32	0.30	0.28	0.26	0.24	0.21	0.18
	60\%	0.13	0.21	0.26	0.30	0.33	0.35	0.36	0.37	0.38	0.37	0.37	0.36	0.35	0.33	0.31	0.29	0.27	0.24	0.21	0.18
anor	65\%	0.14	0.22	0.28	0.32	0.35	0.38	0.39	0.40	0.40	0.40	0.39	0.38	0.37	0.35	0.33	0.31	0.28	0.25	0.22	0.18
-	70\%	0.15	0.24	0.30	0.35	0.38	0.40	0.42	0.43	0.43	0.43	0.42	0.41	0.39	0.37	0.35	0.32	0.30	0.26	0.23	0.19
	75\%	0.16	0.26	0.32	0.37	0.41	0.43	0.45	0.46	0.46	0.46	0.45	0.44	0.42	0.40	0.38	0.35	0.32	0.28	0.24	0.20
	80\%	0.18	0.27	0.34	0.40	0.43	0.46	0.48	0.49	0.49	0.49	0.48	0.47	0.45	0.43	0.40	0.37	0.34	0.30	0.26	0.22
	85\%	0.19	0.29	0.37	0.42	0.46	0.49	0.51	0.52	0.53	0.53	0.52	0.50	0.48	0.46	0.43	0.40	0.37	0.33	0.29	0.24
	90\%	0.20	0.31	0.39	0.45	0.49	0.53	0.55	0.56	0.56	0.56	0.55	0.54	0.52	0.50	0.47	0.44	0.40	0.36	0.32	0.27
	95\%	0.21	0.33	0.41	0.48	0.53	0.56	0.58	0.60	0.60	0.60	0.59	0.58	0.56	0.53	0.51	0.47	0.43	0.39	0.35	0.30
	100\%	0.22	0.35	0.44	0.51	0.56	0.59	0.62	0.63	0.64	0.64	0.63	0.62	0.60	0.57	0.55	0.51	0.47	0.43	0.38	0.33

Massachusetts Institute of Technology

EV when M = 9

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.32	0.36	0.40	0.43	0.47	0.50	0.54	0.57	0.60	0.64	0.67	0.70	0.74
	10\%	0.05	0.09	0.13	0.17	0.20	0.23	0.26	0.29	0.32	0.34	0.37	0.40	0.42	0.44	0.47	0.49	0.51	0.54	0.56	0.58
	15\%	0.06	0.10	0.14	0.17	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.35	0.37	0.38	0.40	0.41	0.43	0.44	0.45	0.46
	20\%	0.06	0.11	0.14	0.17	0.20	0.22	0.24	0.26	0.28	0.29	0.31	0.32	0.33	0.34	0.35	0.35	0.36	0.37	0.37	0.37
	25\%	0.07	0.12	0.15	0.18	0.21	0.23	0.25	0.26	0.27	0.28	0.29	0.30	0.30	0.31	0.31	0.31	0.31	0.31	0.31	0.30
	30\%	0.08	0.13	0.17	0.20	0.22	0.24	0.26	0.27	0.28	0.28	0.29	0.29	0.29	0.29	0.28	0.28	0.27	0.27	0.26	0.25
11	35\%	0.09	0.14	0.18	0.21	0.24	0.25	0.27	0.28	0.28	0.29	0.29	0.29	0.28	0.28	0.27	0.26	0.25	0.23	0.22	0.20
	40\%	0.10	0.16	0.20	0.23	0.26	0.27	0.29	0.29	0.30	0.30	0.30	0.29	0.28	0.27	0.26	0.25	0.23	0.21	0.19	0.17
\bigcirc	45\%	0.11	0.17	0.22	0.25	0.28	0.29	0.31	0.31	0.32	0.31	0.31	0.30	0.29	0.28	0.26	0.24	0.22	0.20	0.18	0.15
a	50\%	0.12	0.19	0.24	0.27	0.30	0.32	0.33	0.34	0.34	0.33	0.33	0.32	0.30	0.29	0.27	0.25	0.22	0.19	0.17	0.14
	55\%	0.13	0.21	0.26	0.30	0.32	0.34	0.36	0.36	0.36	0.36	0.35	0.34	0.32	0.30	0.28	0.25	0.23	0.20	0.16	0.13
	60\%	0.14	0.22	0.28	0.32	0.35	0.37	0.38	0.39	0.39	0.38	0.37	0.36	0.34	0.32	0.30	0.27	0.24	0.20	0.17	0.13
910	65\%	0.16	0.24	0.30	0.35	0.38	0.40	0.41	0.42	0.42	0.41	0.40	0.39	0.37	0.34	0.32	0.29	0.25	0.22	0.18	0.14
-	70\%	0.17	0.26	0.33	0.38	0.41	0.43	0.45	0.45	0.45	0.45	0.44	0.42	0.40	0.37	0.34	0.31	0.28	0.24	0.20	0.15
	75\%	0.18	0.28	0.35	0.40	0.44	0.47	0.48	0.49	0.49	0.48	0.47	0.45	0.43	0.41	0.38	0.34	0.30	0.26	0.22	0.17
	80\%	0.19	0.30	0.38	0.43	0.47	0.50	0.52	0.53	0.53	0.52	0.51	0.49	0.47	0.44	0.41	0.37	0.33	0.29	0.24	0.19
	85\%	0.21	0.32	0.40	0.46	0.51	0.54	0.56	0.57	0.57	0.56	0.55	0.53	0.51	0.48	0.45	0.41	0.37	0.32	0.27	0.22
	90\%	0.22	0.34	0.43	0.49	0.54	0.57	0.60	0.61	0.61	0.61	0.59	0.58	0.55	0.52	0.49	0.45	0.41	0.36	0.31	0.25
	95\%	0.23	0.36	0.46	0.53	0.58	0.61	0.64	0.65	0.65	0.65	0.64	0.62	0.60	0.57	0.53	0.49	0.45	0.40	0.35	0.29
	100\%	0.25	0.39	0.49	0.56	0.61	0.65	0.68	0.70	0.70	0.70	0.69	0.67	0.65	0.62	0.58	0.54	0.50	0.45	0.39	0.33

Massachusetts Institute of Technology

EV when M = 10

Good calling range

Villain's Push Range

Hero's
Call
Range

	5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
5\%	5ex	0.09	0.13	0.17	0.21	0.24	0.28	0.32	0.35	0.39	0.42	0.45	0.49	0.52	0.55	0.59	0.62	0.65	0.68	0.71
10\%	0.05	0.09	4	0.16	0.19	0.22	0.25	0.28	0.31	0.33	0.35	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.54
15\%	0.06	0.10	0.14	0.17	0.19	0.22	0.24	0.26	0.28	0.30	0.31	0.33	0.34	0.36	0.37	0.38	0.39	0.40	0.41	0.42
20\%	0.07	0.11	0.14	0.17	0.20	0.22	0.24	0.25	0.27	0.28	0.29	0.30	0.30	0.31	0.31	0.32	0.32	0.32	0.32	0.32
25\%	0.08	0.12	0.16	0.19	0.21	0.23	0.24	0.2	0.26	0.27	0.27	0.28	0.28	0.28	0.28	0.27	0.27	0.26	0.25	0.25
30\%	0.09	0.14	0.17	0.20	0.22	0.24	0.25	0.26	0.27	-27	0.27	0.27	0.26	0.26	0.25	0.24	0.23	0.22	0.20	0.19
35\%	0.10	0.15	0.19	0.22	0.24	0.26	0.27	0.27	0.28	0.28	0.27	-	0.26	0.25	0.24	0.22	0.20	0.19	0.16	0.14
40\%	0.11	0.17	0.21	0.24	0.26	0.28	0.29	0.29	0.29	0.29	0.28	0.27	0.20	- 2.25	0.23	0.21	0.19	0.16	0.14	0.11
45\%	0.12	0.18	0.23	0.26	0.29	0.30	0.31	0.32	0.32	0.31	0.30	0.29	0.27	0.25	0.25	0.21	0.18	0.15	0.12	0.09
50\%	0.13	0.20	0.25	0.29	0.31	0.33	0.34	0.34	0.34	0.33	0.32	0.31	0.29	0.27	0.24	0.21	0	0.15	0.12	0.08
55\%	0.14	0.22	0.28	0.32	0.34	0.36	0.37	0.37	0.37	0.36	0.35	0.33	0.31	0.29	0.26	0.23	0.19	0.16		0.08
60\%	0.16	0.24	0.30	0.34	0.37	0.39	0.40	0.41	0.40	0.39	0.38	0.36	0.34	0.31	0.28	0.25	0.21	0.17	0.13	0.08
65\%	0.17	0.26	0.33	0.37	0.41	0.43	0.44	0.44	0.44	0.43	0.41	0.39	0.37	0.34	0.31	0.27	0.23	0.19	0.14	0.09
70\%	0.18	0.28	0.35	0.40	0.44	0.46	0.47	0.48	0.48	0.47	0.45	0.43	0.40	0.37	0.34	0.30	0.26	0.21	0.16	0.11
75\%	0.20	0.31	0.38	0.44	0.47	0.50	0.51	0.52	0.52	0.51	0.49	0.47	0.44	0.41	0.38	0.33	0.29	0.24	0.19	0.13
80\%	0.21	0.33	0.41	0.47	0.51	0.54	0.56	0.56	0.56	0.55	0.54	0.51	0.49	0.45	0.42	0.37	0.33	0.28	0.22	0.16
85\%	0.23	0.35	0.44	0.50	0.55	0.58	0.60	0.61	0.61	0.60	0.58	0.56	0.53	0.50	0.46	0.42	0.37	0.32	0.26	0.20
90\%	0.24	0.38	0.47	0.54	0.59	0.62	0.64	0.66	0.66	0.65	0.63	0.61	0.58	0.55	0.51	0.46	0.41	0.36	0.30	0.24
95\%	0.26	0.40	0.50	0.58	0.63	0.67	0.69	0.70	0.71	0.70	0.69	0.66	0.64	0.60	0.56	0.51	0.46	0.41	0.35	0.28
100\%	0.27	0.42	0.53	0.61	0.67	0.71	0.74	0.76	0.76	0.75	0.74	0.72	0.69	0.66	0.62	0.57	0.52	0.46	0.40	0.33

EV when M = 10

Good calling range

Villain's Push Range

If SB Pushes Top 90\%

 Good
 Bad
 Optimal (Most in Favor of BB)}

Massachusetts Institute of Technology

EV when $\mathrm{M}=9$

Good calling range

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.32	0.36	0.40	0.43	0.47	0.50	0.54	0.57	0.60	0.64	0.67	0.70	0.74
	10\%	0.05	0.09	0.13	0.17	0.20	0.23	0.26	0.29	0.32	0.34	0.37	0.40	0.42	0.44	0.47	0.49	0.51	0.54	0.56	0.58
	15\%	0.06	0.10	0.14	0.17	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.35	0.37	0.38	0.40	0.41	0.43	0.44	0.45	0.46
	20\%	0.06	0.11	0.14	0.17	0.20	0.22	0.24	0.26	0.28	0.29	0.31	0.32	0.33	0.34	0.35	0.35	0.36	0.37	0.37	0.37
	25\%	0.07	0.12	0.15	0.18	0.21	0.23	0.25	0.26	0.27	0.28	0.29	0.30	0.30	0.31	0.31	0.31	0.31	0.31	0.31	0.30
	30\%	0.08	0.13	0.17	0.20	0.22	0.24	0.26	0.27	0.28	0.28	0.29	0.29	0.29	0.29	0.28	0.28	0.27	0.27	0.26	0.25
110	35\%	0.09	0.14	0.18	$\text { Call } \%=\operatorname{Push} \% * 1 / 2$					0.28	0.29	0.29	0.29	0.28	0.28	0.27	0.26	0.25	0.23	0.22	0.20
	40\%	0.10	0.16	0.20						0.30	0.30	0.30	0.29	0.28	0.27	0.26	0.25	0.23	0.21	0.19	0.17
$\bigcirc 1$	45\%	0.11	0.17	0.22						0.32	0.31	0.31	0.30	0.29	0.28	0.26	0.24	0.22	0.20	0.18	0.15
$\boldsymbol{\square}$	50\%	0.12	0.19	0.24	-	\%.00	-roz	-r.s)	\%.07	0.34	0.33	0.33	0.32	0.30	0.29	0.27	0.25	0.22	0.19	0.17	0.14
	55\%	0.13	0.21	0.26	0.30	0.32	0.34	0.36	0.36	0.36	0.36	0.35	0.34	0.32	0.30	0.28	0.25	0.23	0.20	0.16	0.13
	60\%	0.14	0.22	0.28	0.32	0.35	0.37	0.38	0.39	0.39	0.38	0.37	0.36	0.34	0.32	0.30	0.27	0.24	0.20	0.17	0.13
2anor	65\%	0.16	0.24	0.30	0.35	0.38	0.40	0.41	0.42	0.42	0.41	0.40	0.39	0.37	0.34	0.32	0.29	0.25	0.22	0.18	0.14
Laile	70\%	0.17	0.26	0.33	0.38	0.41	0.43	0.45	0.45	0.45	0.45	0.44	0.42	0.40	0.37	0.34	0.31	0.28	0.24	0.20	0.15
	75\%	0.18	0.28	0.35	0.40	0.44	0.47	0.48	0.49	0.49	0.48	0.47	0.45	0.43	0.41	0.38	0.34	0.30	0.26	0.22	0.17
	80\%	0.19	0.30	0.38	0.43	0.47	0.50	0.52	0.53	0.53	0.52	0.51	0.49	0.47	0.44	0.41	0.37	0.33	0.29	0.24	0.19
	85\%	0.21	0.32	0.40	0.46	0.51	0.54	0.56	0.57	0.57	0.56	0.55	0.53	0.51	0.48	0.45	0.41	0.37	0.32	0.27	0.22
	90\%	0.22	0.34	0.43	0.49	0.54	0.57	0.60	0.61	0.61	0.61	0.59	0.58	0.55	0.52	0.49	0.45	0.41	0.36	0.31	0.25
	95\%	0.23	0.36	0.46	0.53	0.58	0.61	0.64	0.65	0.65	0.65	0.64	0.62	0.60	0.57	0.53	0.49	0.45	0.40	0.35	0.29
	100\%	0.25	0.39	0.49	0.56	0.61	0.65	0.68	0.70	0.70	0.70	0.69	0.67	0.65	0.62	0.58	0.54	0.50	0.45	0.39	0.33

Good Bad
Optimal (Most in Favor of BB)

Massachusetts Institute of Technology

EV when M = 6

Good calling range

Villain's Push Range

Good Bad
Optimal (Most in Favor of BB)

Massachusetts Institute of Technology

EV when M = 4

Good calling range

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.09	0.14	0.18	0.23	0.27	0.31	0.36	0.40	0.44	0.48	0.53	0.57	0.61	0.65	0.69	0.74	0.78	0.82	0.86
	10\%	0.05	0.09	0.14	0.18	0.22	0.26	0.30	0.33	0.37	0.41	0.45	0.48	0.52	0.56	0.59	0.63	0.66	0.70	0.73	0.77
	15\%	0.05	0.09	0.14	0.17	0.21	0.25	0.28	0.32	0.35	0.39	0.42	0.45	0.48	0.51	0.55	0.58	0.61	0.64	0.67	0.70
	20\%	0.05	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34	0.37	0.40	0.43	0.45	0.48	0.51	0.54	0.56	0.59	0.61	0.64
	25\%	0.06	0.10	0.14	0.17	0.21	0.24	0.27	0.30	0.33	$\text { Callo } \% \text { Push } \%$				- 46	0.48	0.50	0.52	0.54	0.57	0.59
TT ${ }^{9}$	30\%	0.06	0.10	0.14	0.18	0.21	0.24	0.27	0.30	0.32					. 43	0.45	0.47	0.49	0.51	0.53	0.54
11	35\%	0.06	0.11	0.15	0.18	0.21	0.24	0.27	0.29	0.32					. 42	0.43	0.45	0.46	0.48	0.49	0.51
	40\%	0.07	0.11	0.15	0.19	0.22	0.24	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.40	0.42	0.43	0.44	0.45	0.46	0.47
Ω	45\%	0.07	0.12	0.16	0.19	0.22	0.25	0.27	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	0.41	0.42	0.43	0.44	0.44
d	50\%	0.07	0.12	0.16	0.20	0.23	0.25	0.28	0.30	0.32	0.33	0.35	0.36	0.37	0.38	0.39	0.40	0.41	0.41	0.42	0.42
	55\%	0.08	0.13	0.17	0.21	0.24	0.26	0.28	0.30	0.32	0.34	0.35	0.36	0.37	0.38	0.38	0.39	0.39	0.40	0.40	0.40
	60\%	0.08	0.14	0.18	0.21	0.24	0.27	0.29	0.31	0.33	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.38	0.38	0.38
のno	65\%	0.09	0.14	0.19	0.22	0.25	0.28	0.30	0.32	0.33	0.34	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.37	0.37	0.37
-	70\%	0.09	0.15	0.20	0.23	0.26	0.29	0.31	0.32	0.34	0.35	0.36	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.36	0.36
	75\%	0.10	0.16	0.20	0.24	0.27	0.30	0.32	0.33	0.35	0.36	0.37	0.37	0.37	0.38	0.38	0.37	0.37	0.36	0.36	0.35
	80\%	0.10	0.17	0.21	0.25	0.28	0.31	0.33	0.34	0.36	0.37	0.37	0.38	0.38	0.38	0.38	0.37	0.37	0.36	0.35	0.34
	85\%	0.11	0.17	0.22	0.26	0.29	0.32	0.34	0.36	0.37	0.38	0.38	0.39	0.39	0.39	0.38	0.38	0.37	0.36	0.35	0.34
	90\%	0.11	0.18	0.23	0.27	0.31	0.33	0.35	0.37	0.38	0.39	0.39	0.40	0.40	0.39	0.39	0.38	0.37	0.36	0.35	0.33
	95\%	0.12	0.19	0.24	0.28	0.32	0.34	0.36	0.38	0.39	0.40	0.40	0.41	0.41	0.40	0.39	0.39	0.38	0.36	0.35	0.33
	100\%	0.12	0.20	0.25	0.30	0.33	0.36	0.38	0.39	0.41	0.41	0.42	0.42	0.42	0.41	0.40	0.39	0.38	0.37	0.35	0.33

Good Bad
Optimal (Most in Favor of BB)

Massachusetts Institute of Technology

EV when $\mathrm{M}=2$

Good calling range

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.10	0.14	0.19	0.23	0.28	0.33	0.37	0.42	0.46	0.51	0.55	0.60	0.64	0.69	0.73	0.78	0.82	0.86	0.91
	10\%	0.05	0.09	0.14	0.18	0.22	0.27	0.31	0.35	0.39	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76	0.80	0.85
	15\%	0.05	0.09	0.14	0.18	0.22	0.26	0.30	0.34	0.38	0.42	0.45	0.49	0.53	0.57	0.61	0.64	0.68	0.72	0.75	0.79
	20\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.33	0.36	0.40	0.43	0.47	0.50	0.54	0.57	0.61	0.64	0.68	0.71	0.74
	25\%	0.05	0.09	0.13	0.17	0.21	$\mathrm{Call} \%=\mathrm{Push} \% * 2$					0.42	0.45	0.48	0.51	0.55	0.58	0.61	0.64	0.67	0.70
TTPen	30\%	0.05	0.09	0.13	0.17	0.21						0.40	0.43	0.46	0.49	0.52	0.55	0.58	0.61	0.63	0.66
Hero	35\%	0.05	0.09	0.13	0.17	0.20						0.39	0.42	0.44	0.47	0.50	0.52	0.55	0.58	0.60	0.63
	40\%	0.05	0.09	0.13	0.17	0.20	0.23	0.26	0.29	0.32	0.35	0.38	0.40	0.43	0.45	0.48	0.50	0.53	0.55	0.57	0.59
	45\%	0.05	0.10	0.13	0.17	0.20	0.23	0.26	0.29	0.32	0.34	0.37	0.39	0.41	0.44	0.46	0.48	0.50	0.52	0.54	0.56
-	50\%	0.06	0.10	0.13	0.17	0.20	0.23	0.26	0.28	0.31	0.33	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.53
	55\%	0.06	0.10	0.14	0.17	0.20	0.23	0.26	0.28	0.30	0.33	0.35	0.37	0.39	0.41	0.43	0.44	0.46	0.48	0.49	0.51
	60\%	0.06	0.10	0.14	0.17	0.20	0.23	0.25	0.28	0.30	0.32	0.34	0.36	0.38	0.40	0.41	0.43	0.44	0.46	0.47	0.48
ح	65\%	0.06	0.10	0.14	0.17	0.20	0.23	0.25	0.28	0.30	0.32	0.33	0.35	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46
Malle	70\%	0.06	0.11	0.14	0.17	0.20	0.23	0.25	0.27	0.29	0.31	0.33	0.34	0.36	0.37	0.39	0.40	0.41	0.42	0.43	0.44
	75\%	0.06	0.11	0.14	0.18	0.20	0.23	0.25	0.27	0.29	0.31	0.32	0.34	0.35	0.36	0.38	0.39	0.39	0.40	0.41	0.42
	80\%	0.07	0.11	0.15	0.18	0.21	0.23	0.25	0.27	0.29	0.31	0.32	0.33	0.34	0.36	0.36	0.37	0.38	0.39	0.39	0.40
	85\%	0.07	0.11	0.15	0.18	0.21	0.23	0.25	0.27	0.29	0.30	0.32	0.33	0.34	0.35	0.36	0.36	0.37	0.37	0.38	0.38
	90\%	0.07	0.12	0.15	0.18	0.21	0.23	0.25	0.27	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.35	0.36	0.36	0.36	0.36
	95\%	0.07	0.12	0.16	0.19	0.21	0.24	0.26	0.27	0.29	0.30	0.31	0.32	0.33	0.33	0.34	0.34	0.35	0.35	0.35	0.35
	100\%	0.07	0.12	0.16	0.19	0.22	0.24	0.26	0.27	0.29	0.30	0.31	0.32	0.32	0.33	0.33	0.34	0.34	0.34	0.34	0.33

\square
Good
Bad

Optimal (Most in Favor of BB)

Massachusetts Institute of Technology

EV when M = 1

Good calling range

Villain's Push Range

		5\%	10\%	15\%	20\%	25\%	30\%	35\%	40\%	45\%	50\%	55\%	60\%	65\%	70\%	75\%	80\%	85\%	90\%	95\%	100\%
	5\%	0.05	0.10	0.14	0.19	0.24	0.28	0.33	0.38	0.42	0.47	0.52	0.56	0.61	0.66	0.70	0.75	0.80	0.84	0.89	0.93
	10\%	0.05	0.09	0.14	0.18	0.23	0.27	0.32	0.36	0.41	0.45	0.49	0.54	0.58	0.62	0.67	0.71	0.75	0.80	0.84	0.88
	15\%	0.05	0.09	0.14	0.18	0.22	0.26	0.31	0.35	0.39	0.43	0.47	0.51	0.55	0.59	0.64	0.68	0.72	0.76	0.80	0.84
	20\%	0.05	0.09	0.13	0.17	0.21	0.25	0.29	0.33	0.37	0.41	0.45	0.49	0.53	0.57	0.61	0.64	0.68	0.72	0.76	0.80
	25\%	0.05	0.09	0.13	0.17	0.21	$\text { Call } \%=\text { Push } \% * 10$. 43	0.47	0.51	0.54	0.58	0.62	0.65	0.69	0.72	0.76
T	30\%	0.05	0.09	0.13	0.17	0.20						. 42	0.45	0.49	0.52	0.55	0.59	0.62	0.66	0.69	0.72
Hero	35\%	0.05	0.09	0.12	0.16	0.20						. 40	0.44	0.47	0.50	0.53	0.56	0.59	0.62	0.66	0.69
	40\%	0.05	0.09	0.12	0.16	0.19	0.23	0.26	0.29	0.33	0.36	0.39	0.42	0.45	0.48	0.51	0.54	0.57	0.60	0.62	0.65
	45\%	0.05	0.08	0.12	0.16	0.19	0.22	0.25	0.28	0.32	0.34	0.37	0.40	0.43	0.46	0.49	0.51	0.54	0.57	0.60	0.62
-	50\%	0.05	0.08	0.12	0.15	0.19	0.22	0.25	0.28	0.31	0.33	0.36	0.39	0.41	0.44	0.47	0.49	0.52	0.54	0.57	0.59
	55\%	0.05	0.08	0.12	0.15	0.18	0.21	0.24	0.27	0.30	0.32	0.35	0.37	0.40	0.42	0.45	0.47	0.49	0.52	0.54	0.56
	60\%	0.05	0.08	0.12	0.15	0.18	0.21	0.23	0.26	0.29	0.31	0.34	0.36	0.38	0.41	0.43	0.45	0.47	0.49	0.51	0.53
	65\%	0.05	0.08	0.12	0.15	0.18	0.20	0.23	0.25	0.28	0.30	0.32	0.35	0.37	0.39	0.41	0.43	0.45	0.47	0.49	0.51
Hante	70\%	0.05	0.08	0.12	0.15	0.17	0.20	0.22	0.25	0.27	0.29	0.31	0.33	0.35	0.37	0.39	0.41	0.43	0.45	0.46	0.48
	75\%	0.05	0.08	0.11	0.14	0.17	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.39	0.41	0.42	0.44	0.45
	80\%	0.05	0.08	0.11	0.14	0.17	0.19	0.21	0.24	0.26	0.27	0.29	0.31	0.33	0.34	0.36	0.37	0.39	0.40	0.41	0.43
	85\%	0.05	0.08	0.11	0.14	0.17	0.19	0.21	0.23	0.25	0.27	0.28	0.30	0.31	0.33	0.34	0.36	0.37	0.38	0.39	0.40
	90\%	0.05	0.08	0.11	0.14	0.16	0.18	0.21	0.22	0.24	0.26	0.27	0.29	0.30	0.31	0.33	0.34	0.35	0.36	0.37	0.38
	95\%	0.05	0.08	0.11	0.14	0.16	0.18	0.20	0.22	0.23	0.25	0.26	0.28	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36
	100\%	0.05	0.08	0.11	0.14	0.16	0.18	0.20	0.21	0.23	0.24	0.26	0.27	0.28	0.29	0.30	0.31	0.31	0.32	0.33	0.33

Massachusetts Institute of Technology

When Hero is BB (second to act)

The dominating calling range is a proportion of the SB's pushing range

Stack (M)	Call Multiple
1	10 x
2	2 x
4	1 x
6	$2 / 3 \mathrm{x}$
9	$1 / 2 \mathrm{x}$

Optimal BB Call $\%=$ SB Push $\% * \mathrm{CM}$

Other Positions (Calling)

Massachusetts Institute of Technology

Other Positions (Calling)

Massachusetts Institute of Technology

Pre-flop Analysis

- Motivator
- Range Definition
- Basic Assumptions
- Heads Up
- Other Positions

Massachusetts Institute of Technology

Other Positions (Calling)

We need to make generous assumptions to help develop rules for other positions

The biggest unknown is the actions of players left to act
Assumptions are on the conservative side, so that the errors are folding small positive edges, rather than calling small negative edges

Conservative Assumptions
SDWinAmt = Stack (no discount for being SBRU\%\%)
Second caller range is TT + , $\mathrm{AQ}+$ or top 5%
$\mathrm{Win} \%$ if called twice $=0 \%$
Minimum Win $\%=50 \%+5 \%$ for each remaining player
Since a second caller reduces our equity to 0%

Massachusetts Institute of Technology

Other Positions (Calling)

Minimum Win $\%=50 \%+5 \%$ for each remaining player
HeroWin $\%=50 \%+.085 * \ln ($ VillainRange $)-.085 * \ln ($ HeroRange $)+\varepsilon$

Players Remaining	Minimum Hero Win\%	Hero Range Multiple	HeroRange = VillainRange * HRM
5	75%	5%	Example: Villain pushes top 50\% from
4	70%	10%	CO, Hero is BTN (2 remaining)

Other Positions (Calling) - Rules of Thumb

Position	Hero Calling Range
MP	$5 \% * V$-Range
LP	$10 \% * V$-Range
CO	$30 \% * V$-Range
SB	$50 \% * V$-Range

Thought process of the Cutoff facing a push:

Is his pushing range 3 x wider than my cards?
I have AQ , would he push A5?
Top 5\% vs Top 15\%
I have AT, would he push KJ? Top 10% vs Top 30%

I have KQ , would he push 85 ?
Top 20% vs Top 60%

Significant reliance on reading opponent push ranges
Reminder: These are conservative estimates, so a threshold call is likely to be very + EV

Other Positions (Pushing)

Analytical solution is complex
Our goal is to develop a decision table based on conservative assumptions
Conservative Assumptions
SDWinAmt = Stack
First caller range is $55+$, AT+ or top 10%
Second caller range is TT + , AQ+ or top 5%
$\mathrm{Win} \%$ if called twice $=20 \%$
Third caller range is 0% [never called three times]
Questions:
When can we profitably push Broadway (Top 30\%)?
When can we profitably push any two cards (Top 100\%)?

Pushing Top 30\% (Broadway)

Hero's EV (in terms
Remaining Players of M)

	$\mathbf{1}$ left	2 left	3 left	4 left	5 left	6 left	7 left	8 left	9 left
$\mathbf{1 M}$	0.21	0.14	0.09	0.06	0.04	0.02	0.00	-0.01	-0.01
$\mathbf{2 M}$	0.20	0.14	0.08	0.05	0.02	0.00	-0.02	-0.03	-0.04
$\mathbf{3 M}$	0.20	0.13	0.08	0.04	0.01	-0.02	-0.04	-0.05	-0.07
$\mathbf{4 M}$	0.20	0.12	0.07	0.02	-0.01	-0.04	-0.06	-0.08	-0.10
$\mathbf{5 M}$	0.20	0.12	0.06	0.01	-0.02	-0.05	-0.08	-0.10	-0.12
$\mathbf{6 M}$	0.19	0.11	0.05	0.00	-0.04	-0.07	-0.10	-0.13	-0.15
$\mathbf{7 M}$	0.19	0.11	0.04	-0.01	-0.05	-0.09	-0.12	-0.15	-0.18
$\mathbf{8 M}$	0.19	0.10	0.03	-0.02	-0.07	-0.11	-0.14	-0.17	-0.20
$\mathbf{9 M}$	0.18	0.09	0.02	-0.04	-0.08	-0.13	-0.16	-0.20	-0.23
$\mathbf{1 0 M}$	0.18	0.09	0.01	-0.05	-0.10	-0.14	-0.19	-0.22	-0.26

\square Good $\square \mathrm{Bad}$

Pushing Top 100\% (ATC)

Hero's EV (in terms
Remaining Players of M)

Stack
Size

	$\mathbf{1}$ left	2 left	3 left	4 left	$\mathbf{5}$ left	$\mathbf{6}$ left	7 left	8 left	9 left
$\mathbf{1 M}$	0.63	0.37	0.18	0.05	-0.05	-0.12	-0.17	-0.21	-0.24
$\mathbf{2 M}$	0.56	0.25	0.02	-0.14	-0.26	-0.35	-0.42	-0.47	-0.52
$\mathbf{3 M}$	0.49	0.13	-0.14	-0.33	-0.48	-0.59	-0.67	-0.74	-0.80
$\mathbf{4 M}$	0.42	0.01	-0.30	-0.52	-0.69	-0.82	-0.92	-1.01	-1.08
$\mathbf{5 M}$	0.35	-0.11	-0.46	-0.71	-0.90	-1.05	-1.17	-1.27	-1.36
$\mathbf{6 M}$	0.28	-0.23	-0.62	-0.90	-1.12	-1.29	-1.43	-1.54	-1.64
$\mathbf{7 M}$	0.21	-0.36	-0.78	-1.09	-1.33	-1.52	-1.68	-1.81	-1.92
$\mathbf{8 M}$	0.15	-0.48	-0.94	-1.28	-1.55	-1.76	-1.93	-2.07	-2.20
$\mathbf{9 M}$	0.08	-0.60	-1.10	-1.47	-1.76	-1.99	-2.18	-2.34	-2.48
$\mathbf{1 0 M}$	0.01	-0.72	-1.26	-1.66	-1.98	-2.23	-2.43	-2.61	-2.76

\square Good $\square \mathrm{Bad}$

Pushing Top 10\% (AT+, 55+)

Hero's EV (in terms Remaining Players

\square Good $\square \mathrm{Bad}$

Pushing Rules of Thumb

AT+ 55+

	$\mathbf{1}$ left	$\mathbf{2}$ leff	$\mathbf{3}$ leff	$\mathbf{4}$ left	$\mathbf{5}$ left	$\mathbf{6}$ left	$\mathbf{7}$ left	$\mathbf{8}$ left	$\mathbf{9}$ left
$\mathbf{1 M}$	0.07	0.06	0.04	0.03	0.03	0.02	0.02	0.01	0.01
$\mathbf{2 M}$	0.08	0.06	0.05	0.04	0.04	0.03	0.03	0.02	0.02
$\mathbf{3 M}$	0.08	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03
$\mathbf{4 M}$	0.09	0.08	0.07	0.06	0.06	0.05	0.05	0.04	0.04
$\mathbf{5 M}$	0.09	0.08	0.08	0.07	0.07	0.06	0.06	0.05	0.05
$\mathbf{6 M}$	0.10	0.09	0.09	0.08	0.08	0.07	0.07	0.06	0.05
$\mathbf{7 M}$	0.10	0.10	0.10	0.09	0.09	0.08	0.08	0.07	0.06
$\mathbf{8 M}$	0.11	0.11	0.11	0.10	0.10	0.09	0.08	0.08	0.07
$\mathbf{9 M}$	0.11	0.11	0.11	0.11	0.11	0.10	0.09	0.09	0.08
$\mathbf{1 0 M}$	0.11	0.12	0.12	0.12	0.12	0.11	0.10	0.10	0.09

Broadway

	1 left	2 left	3 left	4 left	5 left	6 left	7 left	8 left	9 left
1M	0.21	0.14	0.09	0.06	0.04	0.02	0.00	-0.01	-0.01
2M	0.20	0.14	0.08	0.05	0.02	0.00	-0.02	-0.03	-0.04
3M	0.20	0.13	0.08	0.04	0.01	-0.02	-0.04	-0.05	-0.07
$\mathbf{4 M}$	0.20	0.12	0.07	0.02	-0.01	-0.04	-0.06	-0.08	-0.10
$\mathbf{5 M}$	0.20	0.12	0.06	0.01	-0.02	0.05	0.08	-0.10	-0.12
$\mathbf{6 M}$	0.19	0.11	0.05	0.00	-0.04	-0.07	0.10	-0.13	-0.15
$\mathbf{7 M}$	0.19	0.11	0.04	-0.01	-0.05	-0.09	0.12	-0.15	-0.18
$\mathbf{8 M}$	0.19	0.10	0.03	-0.02	-0.07	-0.11	-0.14	-0.17	-0.20
$\mathbf{9 M}$	0.18	0.09	0.02	-0.04	-0.08	-0.13	-0.16	-0.20	-0.23
$\mathbf{1 0 M}$	0.18	0.09	0.01	-0.05	-0.10	-0.14	-0.19	-0.22	-0.26

Any Two Cards

	1 left	2 left	3 left	4 left	5 left	6 left	7 left	8 left	9 left
1M	0.63	0.37	0.18	0.05	-0.05	-0.12	-0.17	-0.21	-0.24
2M	0.56	0.25	0.02	0.14	-0.26	-0.35	-0.42	-0.47	-0.52
3M	0.49	0.13	-0.14	-0.33	-0.48	-0.59	-0.67	-0.74	-0.80
4M	0.42	0.01	-0.30	-0.52	-0.69	-0.82	-0.92	-1.01	-1.08
SM	0.35	-0.11	-0.46	-0.71	-0.90	-1.05	-1.17	-1.27	-1.36
$\mathbf{6 M}$	0.28	-0.23	-0.62	-0.90	-1.12	-1.29	-1.43	-1.54	-1.64
7M	0.21	-0.36	-0.78	-1.09	-1.33	-1.52	-1.68	-1.81	-1.92
8M	0.15	-0.48	-0.94	-1.28	-1.55	-1.76	-1.93	-2.07	-2.20
9M	0.08	-0.60	-1.10	-1.47	-1.76	-1.99	-2.18	-2.34	-2.48
$\mathbf{1 0 M}$	0.01	-0.72	-1.26	-1.66	-1.98	-2.23	-2.43	-2.61	-2.76

Pushing top 10% is profitable from any position with stack size up to 10 M

Pushing top 30% is profitable
From any position with 1M
From late position with 6M
From cutoff with 10M

Pushing top 100% is profitable
From late position with 1M
From button with 4M
From SB with 10M

Other Positions (Pushing) - Rules of Thumb

Conservative + EV Pushing Ranges
Simplified (Not Optimal)

Stack Size	Push ATC From	Push Broadway From	Push AT+, 55+ From
1 M	Late	Always	Always
5 M	Button	Late	Always
10 M	Small Blind	Cutoff	Always

Always push top 10% for $\mathrm{M}<10$
Push very wide from any position for $\mathrm{M}<1$
Push in late position with Broadway for $\mathrm{M}<5$

Other Positions (Calling) - Rules of Thumb

Position	Hero Calling Range
MP	$5 \% * V$-Range
LP	$10 \% * V$-Range
CO	$30 \% * V$-Range
SB	$50 \% * V$-Range

Thought process of the Cutoff facing a push:

Is his pushing range 3 x wider than my cards?
I have AQ , would he push A5?
Top 5\% vs Top 15\%
I have AT, would he push KJ? Top 10% vs Top 30%

I have KQ , would he push 85 ?
Top 20% vs Top 60%

Significant reliance on reading opponent push ranges
Reminder: These are conservative estimates, so a threshold call is likely to be very + EV

Heads Up (Pushing) - Rules of Thumb

If you think Villain is tight, top 100% is always optimal
Otherwise...

Stack Size	Push
1 M	Top 100%
5 M	Top 75%
10 M	Top 50%

Heads Up (Calling) - Rules of Thumb

The dominating calling range is a proportion of the SB's pushing range

Stack (M)	Call Multiple
1	10 x
2	2 x
4	1 x
6	$2 / 3 \mathrm{x}$
9	$1 / 2 \mathrm{x}$

Optimal BB Call $\%=$ SB Push $\% * \mathrm{CM}$

Range of Hands

- Simplified ranges you can memorize
- TT,$+ \mathrm{AQ}+=5 \%$
- $55+$, AT $+=10 \%$
$-22+, \mathbf{A 2 +}, \mathrm{KQ}=20 \%$
$-22+$, A2+, Broadway = 30\%
- Pairs and cards adding to $16=50 \%$
- Any two cards = 100\%

MIT OpenCourseWare
http://ocw.mit.edu

15.S50 Poker Theory and Analytics

January IAP 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: Massachusetts Institute of Technology

[^1]: Massachusetts Institute of Technology

[^2]: Massachusetts Institute of Technology

[^3]: Massachusetts Institute of Technology

[^4]: Massachusetts Institute of Technology

[^5]: Massachusetts Institute of Technology

[^6]: Massachusetts Institute of Technology

[^7]: Massachusetts Institute of Technology

[^8]: Massachusetts Institute of Technology

