### Abortion

Week 6

## Objectives

- 1. Learn more details about the cohort study design
- 2. Comprehend confounding and calculate unbiased estimates
- 3. Critically evaluate how abortion is related to issues that derived from sex-linked biology and gender



### Cohort

Synonyms: follow-up study, longitudinal study

Туре

Open (dynamic)

- Defined by a changeable characteristic
- Exposure status may change over time
- Outcome measure
  - Incidence rate (IR) since variable follow-up duration

#### Fixed

- Defined by an irrevocable event
- Exposure defined at start of follow-up, no new enrollees
- Outcome measure
  - Cumulative incidence (CI) (if loss to follow-up loss is low)
  - IR (if loss to followup is high)

#### Closed

- Defined by an irrevocable event
- Exposure defined at start of follow-up, no new enrollees
- No losses during short follow-up
- Outcome measure
  - CI

## Timing

#### Retrospective

- Investigator does not wait for outcomes to develop
- Various benefits and determinants compared to prospective
- Less control of quality and quantity of the data
- Less time consuming
- Less expensive
- Completely dependent on available data
- Potential good starting point for scientific inquiry

#### Prospective

- Investigator waits for outcomes to develop
- Various benefits and determinants compared to retrospective
- More control of the quality and quantity of the data
- Less potential for bias
- Less unavailable data
- More time consuming
- More expensive

Ambidirectional: Elements of both

### Nature of Cohort

General

- Nothing special about exposure
- Often selected on geography (Framingham) or profession (Nurses')
- Appropriate when prevalence of exposure is not too high or low

Special Exposure

• Higher prevalence of exposure (good for rare exposure)

#### Advantages

- Correct temporal sequence:
  exposure → outcome
- Good exposure status information
- Efficient for rare exposures
- Can study several outcomes associated with a single exposure
- Can minimize bias in exposure ascertainment (prospective cohorts)
- Can directly measure incidence of disease among exposed and nonexposed subjects

#### Disadvantages

- Inefficient for studying rare diseases
- Time-consuming (prospective cohorts)
- Must minimize loss to follow-up
- Requires pre-recorded information on exposure and confounders (retrospective)

## Confounding

A confounder is a factor which because of its relationship with the exposure and disease will distort the relative risk

- Will depend on the relationships of the factors in your study
- Confounding is a nuisance factor
- Need to remove the effect of the confounder to understand the exposure/disease relationship want to control for confounding
  - Need to collect information on potential confounders or at least known risk factors for outcome.

Can demonstrate visually with Direct Acyclic Graph (DAG)



|            | lung cancer | no lung cancer |
|------------|-------------|----------------|
| matches    | 25          | 20             |
| no matches | 125         | 130            |
|            | 150         | 150            |
|            | OR - 13     |                |

Two possible paths: Direct effect of matches on lung "Backdoor path" from matches to lung through smoking Problem with confounding is that the exposed and unexposed groups differ.

We want to look at the effect of the exposure on disease in the scenario where the exposed and unexposed do not differ.

Solution: Adjust (or otherwise account) for potential confounder

| Overall              |                |                   |             |  |                |             |                |                   |  |  |
|----------------------|----------------|-------------------|-------------|--|----------------|-------------|----------------|-------------------|--|--|
|                      |                |                   | lung cancer |  | no lung cancer |             |                |                   |  |  |
| _                    | matches        |                   | 25          |  | 20             |             |                |                   |  |  |
| _                    | no matches     |                   | 125         |  | 130            |             |                |                   |  |  |
| _                    |                |                   | 150         |  | 150            |             |                |                   |  |  |
| OR=1.3               |                |                   |             |  |                |             |                |                   |  |  |
|                      | Smokers        |                   |             |  |                | Non-Smokers |                |                   |  |  |
|                      | lung<br>cancer | no lung<br>cancer |             |  |                |             | lung<br>cancer | no lung<br>cancer |  |  |
| matches              | 20             | 10                |             |  | matches        |             | 5              | 10                |  |  |
| no<br>matches        | 80             |                   | 40          |  | no<br>matches  |             | 45             | 90                |  |  |
|                      | 100            |                   | 50          |  |                |             | 50             | 100               |  |  |
| OR=1.0 OR=1.0 OR=1.0 |                |                   |             |  |                |             |                |                   |  |  |

# Confounding Definition

- Confounder must have a **different distribution** in the exposed and unexposed groups.
- Confounder must have a direct effect on the disease in absence of exposure.
- Confounder should NOT be in the **causal pathway** between exposure and disease.
- Important note: Something that is a confounder in one population may not be a confounder in another population.

#### Methods to Control for Potential Confounders

## In the **design** of the study

- Randomization
- Restriction
- Matching

In the **analysis** of the study

- Matched analysis
- Stratification (e.g., pooling)
- Multivariate analysis

## Design: Randomization

Randomization to allocate exposure

- Can only be done in experimental studies
- Control of confounding by known as well as unknown confounding factors, as long as the sample is big enough
- The control of unknown confounders is unique to this design feature

## Design: Restriction

Restrict subjects to one level/stratum of the confounding factor(s)

- For example, perform your study just in men if you are worried about confounding by sex/gender
- Limitation: Limits generalizability

# Design: Matching

Match the study groups so they have identical levels of the confounder

- Exact matching (or individual matching)
- Frequency matching
- Limitations
  - Individual matching can be difficult to do
  - Lose many potential participants
  - Can't examine matched factor

## Analysis: Matched

- But note
  - Because of the potential for overmatching, special type of test needed if you matched individually in the design
- Biostatistics test
  - McNemar's test

## Analysis: Stratification

- Want to look at the effect where the exposed and unexposed do not differ by levels of confounder
- Stratum-specific estimates by levels of the confounders are unconfounded
- Need to combine the unconfounded stratumspecific estimates into one relative risk which is also unconfounded
  - Can do with pooling or standardization

## Analysis: Stratification

A weighted average of stratum-specific relative risks

Approach

- **Divide** the data into groups (strata) according to categories of your potential confounder
- **Calculate** stratum-specific relative risks
- Pool information over all stratum by calculating a weighted average of stratum-specific relative risks to compare to the crude estimate
- The weights should reflect the amount of information in each stratum (e.g., sample size)

#### Crude Analysis



Stratified Analysis by Level of Confounding Factor(s)



#### To Obtain Weighted/ Adjusted RR

Mantel-Haenszel estimators

• Weighted average of RRs of a series of tables: RRi

Weights reflect amount of "information" within each stratum

- Weight increases with
  - Total number in table
  - Balance in exposed-nonexposed
  - Increased risk of outcome

#### Mantel-Haenszel estimators

Cumulative incidence data



### Stratification Example

Gender and mortality among patients with heart disease

• Potential confounding by age

#### **Crude Analysis**



RR = (90/2465p-y)/(131/3946p-y) = 1.1



$$PR_{MH} = \frac{\sum \frac{a_i N_{0i}}{T_i}}{\sum \frac{c_i N_{1i}}{T_i}} = \frac{\frac{(14)(1701)}{3217} + \frac{(76)(2245)}{3194}}{\frac{(10)(1516)}{3217} + \frac{(121)(949)}{3194}} = 1.50$$

### Stratification Example

Conclusions

- Age-adjusted RR (1.5) differs from crude RR (1.1)
- There is confounding by age
- Report relative risk adjusted for age

#### Mantel-Haenszel estimators

Case-control data



$$RR_{MH} = \frac{\sum w_i OR_i}{w_i} = \frac{\sum \frac{a_i d_i}{T_i}}{\sum \frac{b_i c_i}{T_i}} \qquad \text{(if } w_i \neq 0\text{)}$$

where  $W_i = \frac{b_i c_i}{T_i}$ 

#### Mantel-Haenszel Limitations

Can be done as a univariate analysis

• One variable at a time

Cumbersome with multiple confounders

- Results in multiple tables with small numbers (sparse data) in some of the cells
- Reduces power

### Analysis: Multivariable Analysis

- Use mathematical modeling (regression models) to control for many confounders simultaneously
  - Many types, basic structure of formula is a line:
    - Y = a(X) + b
  - Outcome = intercept term (b) + a1(exposure) + a2(first confounder) + a3(second confounder) + ... + ai (last confounder)

### Analysis: Multivariable Analysis

a1: coefficient of the exposure

• Effect of the exposure on the outcome, adjusting/ controlling for the differences in all the confounding factors included in the model.

Example: Mortality = b + a1 [gender (exposure)] + a2 [age (confounder)]

 a1 represents effect of gender on mortality, controlling for differences in age

# Confounding Summary

Confounder is a factor which, because of its relationship with the exposure and disease, will distort the relative risk

- Will depend on the relationships of the factors in your study
- Confounding is a nuisance factor
- You need to remove the effect of the confounder to understand the exposure/disease relationship
  - Want to control for confounding
- Need to collect information on potential confounders or at least known risk factors for outcome

#### © Brittany M. Charlton 2016

MIT OpenCourseWare http://ocw.mit.edu

WGS.151 Gender, Health, and Society Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.