MIT OpenCourseWare http://ocw.mit.edu

Abdul Latif Jameel Poverty Action Lab Executive Training: Evaluating Social Programs Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

How to randomize II

Abdul Latif Jameel Poverty Action Lab

povertyactionlab.org

Outline

- I. Methods of randomization (recap)
- II. Unit of randomization
- III. Multiple treatments: an example
- IV. Stratification
- V. Mechanics of randomization

Methods of randomization—recap

Design	Most useful when	Advantages	Disadvantages
Basic lottery	Program oversubscribed OK for some to get nothing	Familiar Easy to understand Easy to implement Can be implemented in public	Control group may not cooperate Differential attrition
Phase in	Expanding over time Everyone must receive treatment eventuallv	Easy to understand Constraint easy to explain Control comply as expect to benefit later	Anticipation of treatment may impact short run behavior Difficult to measure long term impact
Rotation	Everyone must get something at some point, not enough resources a year for all	More data points than phase in	Difficult to measure long term
Encouragement	Program has to be open to all comers When take up in general is low but can be impacted with incentive easily.	Can randomize at individual level even when program isn't	Measures impact of those who respond to the incentive Need big enough enducement to get change in take up Encouragement may have direct effect

Unit of randomization

- Randomizing at the individual level
- Randomizing at the group level
 - School
 - Community
 - Health center
 - District
- Which level to randomize at?

Unit of randomization

- Individual randomization gives you a bigger sample size at lower cost
- Politically may be difficult to have unequal treatment within a community
- Program can only be implemented at a certain level
- Spillovers
- Encouragement—program implemented at community/district level, randomization at individual level

Multiple treatment: an example

- Problems identified in Balsakhi case
 - Large class size
 - Children at different levels of learning
 - Teachers often absent
 - Curricula inappropriate for level of poor children
- Possible responses
 - More teachers to split classes
 - Streaming of pupils into different achievement bands
 - Make teachers more accountable, may show up more
 - Curricula focused on the basics

Balsakhi study's solution

- Balsakhi study
 - Each school got a Balsakhi (a tutor)—in grade 3 or 4
 - Lowest achieving children sent to Balsakhi half day
 - All children given test
- Do smaller class sizes improve test scores?
 - Compare high achieving pupils in treatment and control
- Does an accountable teacher get better results?
 - Compare treatment effect for low vs. high achieving
 - But low achieving get different teacher and different curricula
- Does streaming improve test scores?
 - Compare high achieving pupils in treatment and control
- Does focusing on the basics improve results?
 - Compare treatment effect for low vs. high achieving
 - But same as for accountable teacher

Alternative with multiple treatments

- Do smaller class sizes improve test scores?
 Add new teachers
- Does accountable teacher get better results?
 - New teachers more accountable
 - Randomize who gets new accountable teacher
- Does streaming improve test scores?
 - Divide some classes by achievment, others not
- Does focusing on basics improve results?
 - Treatment effect on lower achievement groups
 - Train some to focus on basics

<u>Hypothesis 1</u>: Providing extra teachers leads to better educational outcomes (i.e. through reduced class size). <u>Secondary Hypothesis</u>: Providing extra teachers leads to better educational outcomes for low-performing children

Example: grouping classes by ability

<u>Hypothesis 2</u>: Students in classes grouped by ability perform better on average than those in mixed classes <u>Secondary Hypothesis</u>: ability grouping is harmful to lowperforming students

<u>Hypothesis 3</u>: Contract teachers are more effective than government teachers

<u>Secondary Hypothesis</u>: Contract teachers are more effective than government teachers, when classes are tracked

<u>Secondary Hypothesis</u>: Contract teachers are more effective than government teachers in mixed classes

<u>Secondary Hypothesis</u>: Contract teachers are more effective than government teachers in classes of low-performing students

Benefits/costs of cross cutting treatments

- Explicitly test interactions
- Economizes on data collection and fixed costs
- Influences the characteristics of the control group
- E.g. for ETP

Stratification

- Objective: balancing your sample when you have a small sample
- What is it:
 - dividing the sample into different subgroups
 - selecting treatment and control from each subgroup
- What happens if you don't stratify?

When to stratify

- Stratify on variables that could have important impact on outcome variable (bit of a guess)
- Stratify on subgroups that you are particularly interested in (where may think impact of program may be different)
- Stratification more important when small data set or weak power
- Can get complex to stratify on too many variables
- Makes the draw less transparent the more you stratify
- You can also stratify on index variables you create

Mechanics of randomization

- Need sample frame
 - Most methods need a pre-existing list
- Pull out of a hat/bucket
 - Transparent
 - Time consuming, complex if large group
 - Hard to stratify on many dimensions
- Use random number generator in spreadsheet program to order observations randomly
 - Stratify by putting into groups, randomize order within groups
- Stata program code
 - Circulate some examples
- What if no existing list?
 - Do a census
 - Randomize on the spot, but worry about implementation