Session 2
July 11, 3:15-5:30pm

Considerations for

Program and Product Design

Options for structuring financial assistance

Cost points are highly dependent on details of initiative and move along continuum

First step in program design: Credit or not credit?

- Credit is helpful when a large amount of funds are necessary to accomplish a goal
- Buy a house
- Start a business
- Pay for a college education
- But it creates obligations that must be repaid and that can create a burden for recipients
- Alternative is grant or some other form of assistance in smaller amounts that does not require repayment
- Credit has political appeal because it looks cheap
- In current budgetary environment, zero \& negative subsidy rate credit programs have become attractive

\$1B, 1-year EHLP - Key challenges

- Managing demand -- Jan 2011-14.5M unemployed \& 4.5M borrowers delinquent but \$1B EHLP can fund loans to about 40,000 borrowers
- Cost -- Using judgment gained from data from a similar program operated at the state level, estimated only 3\% repayment rate plus admin costs of maybe 10-15 percent, expected costs are about \$1.10/dollar loaned
- Implementation -- Relied heavily on contractors to deliver program, with no time to test approach before go live
- Workload - Sought to minimize administrative expenses but needed to be nimble enough to apply resources as needed
- Fraud prevention - No traditional loan underwriting; once in, borrowers required to certify annually whether remain eligible for assistance (if hired or otherwise become ineligible for EHLP, required to notify HUD)
- Headline risk - Given above, needed plan to coordinate inquiries from the Hill, press, OMB, OIG, and other interested parties
- Metrics - How to measure success?

Once credit is the choice, how to support it?

Example program designs

	SBA	Education	HUD	USDA	HUD	Energy	Treasury - CDFI Fund
Agency Program	Small Business Investment Companies (Venture Capital)	Federal Student Aid	FHA	Rural Development	FHA	Clean Energy	CDFI Fund
Primary reason	Financial	Policy	Financial	Financial	Financial	Policy	Policy
Who championed the problem?	SBIC Trade Group	Public	Congress	Public	Congress	Administration	Administration
	The debenture structure was inappropriate for funding early stage VC deals	Accelerating college costs, decreasing state support, abuses in for-profit entities, flawed private sector lending prompted takeover	Seniors with equity in their homes but inadequate cash can use the equity to boost cash available for living and other expenses	Limited banking options for low and very low income residents in rural areas make hard to own a home, contributing to disinvestment	Following the Debt Crisis there was a need to help defaulted borrowers to get current, renegotiate their mortgage debt, and avoid foreclosure	There was a policy need to spur development of clean energy products through commercialization of innovative ideas	CDFIs with excellent financial performance cannot get long term funding due to market unfamiliarity. Fed bridges the knowledge gap but wants no risk
Product	Participating Securities	Direct Student Loans	Reverse Mortgage Insurance	502 Program	ELP	Title 17	CDFI Bond Guarantee Program
6							

Program and product design choices

- Division of essential lending functions between agency and private partners
- Loan attributes
- Maturity, amortization and loan size
- Fixed vs. floating rates
- The wisdom of indexing
- Higher upfront fees or higher rates?
- Embedded options: prepayment, caps and floors, deferral, forbearance, income-based repayment, consolidation, default
- How much choice is too much?

Program and product design choices

- Other key considerations
- Narrowly or broadly targeted?
- How much default risk is optimal? Should pricing be risk-based?
- Product suitability
- Choices affect
- Success in meeting program goals
- Gov't costs and risks
- Borrower cost and satisfaction

The essential credit functions

- Marketing
- Origination
- Servicing
- Funding
- Screening and monitoring
- Risk bearing
- Resolving defaults

Managing essential credit functions

- Critical decision: Which functions to perform in-house? When to use a private partner?
- Choices have first-order impact on administrative costs, loan performance, borrower satisfaction, goal attainment, etc.
- Apply principle of comparative advantage: who is best positioned to perform the task most efficiently and effectively?
- Be cognizant of challenges of managing private partners

Managing essential credit functions

- Related decision: Guaranteed or direct lending?
- Guaranteed lending usually relies more on private partners
- But direct loan programs also use private partners
- We'll delve into these issues more in Session 5

Loan attributes: Maturity, amortization, and size

- Principle of matching maturity with investment horizon
- Right-sizing loans
- As little as possible to achieve purpose
- Effects on cost, performance and risk
- Longer maturity allows lower periodic payments.
- Normally yield curve is upward sloping => rates charged increase with maturity. Causes increased subsidy cost, all else equal.
- Amortization can reduce default risk by forcing orderly repayment. However, decreases affordability by increasing monthly payments
- A larger number of small loans diversifies portfolio risk

Loan attributes: Fixed vs. floating rates

- Fixed rates from borrower perspective
- make cash flows more predictable for borrower
- may improve performance by avoiding affordability problems when rates rise
- may leave borrower with above-market rate when rates fall
- typically higher rates than on floating rate loans
- Fixed rates from lender/gov't perspective
- may leave lender with below-market rate when rates rise
- Can make the cash flows risky and increases cost if loan is prepayable
- A guiding principle: Fixing a rate is not free. Do not set fixed rate horizons to be unnecessarily long.

Loan attributes: The wisdom of indexing

- Rates can be
- Fixed by statute
- An index rate plus a spread that is fixed by statute
- Set by guaranteed lenders (often with agency or statutory restrictions)
- Set by agency (sometimes with statutory restrictions)
- Indexing links rates on new loans to current market conditions
- E.g., 10-year Treasury + 2\% on 10-year fixed rate loan
- Indexing ensures more uniform subsidies across cohorts
- Avoids cherry-picking by private sector when statutory rates are above market rates

Loan attributes: Higher upfront fees or higher rates?

- Effects of higher upfront fees and lower rates
- Reduces implicit subsidy of high-risk borrowers by low-risk borrowers
- May discourage some target borrowers because reduces affordability
- Can mitigate by rolling fees into loan principal

Embedded options

- Definition: An option provides the right but not the obligation to buy or sell a security at a preset price.
- A call option gives the right to buy
- A put option gives the right to sell
- Both can be valued using "options or derivative pricing models"
- Most "embedded options" in loans benefit borrowers
- Many government credit products are actually complex financial derivatives
- Private lenders recover cost of embedded options through higher interest rates or fees
- Options increase the subsidy rates on gov't loans when they are provided for free

Embedded options: prepayment

- Valuable option to borrowers with fixed-rate loans
- Allows flexibility in timing of loan repayments
- Can take advantage of reductions in market interest rates by refinancing
- Costly option for gov't or private lenders
- Particularly risky on long-term loans with no prepayment penalty
- 30-year fixed rate mortgages
- S\&L crisis; near-bankruptcy of Fannie Mae in 1980s
- More important now for student loans with switch to fixed rates

Embedded options: caps and floors

- Caps put a ceiling on the floating rate paid
- E.g., 1-year Treasury $+3 \%$ with a cap of 10%
- Useful for reaping some of the cost-saving benefits of floating rates while protecting borrowers from very high rates
- Caps increase loan cost and hence subsidy rates
- Floors put a lower bound on the floating rate paid
- E.g., 1-year Treasury $+3 \%$ with a floor of 4%
- Protects lender against low revenues when rates fall
- Floors decrease loan cost and subsidy rates

Embedded options: deferral, forbearance, incomebased repayment, consolidation, and default

- All these options affect the timing and/or size of cash flows to the benefit of borrowers
- Hence they increase subsidy rates and/or the rates charged by private lenders on guaranteed loans
- When embedded options have significant effects, statistics on default rates and recovery rates provide a very incomplete picture of loan performance and cost

Student Loan Consolidation Option: Historical Experience

Consolidation Volume and Estimated Cost (1998-2005)

Consolidat	Consolidation Volume	Consolidation Cost	Consolidation Cost (dollars
ion Year	(billions of $\$$)	(billions of $\$$)	per $\$ 100$)

1998	5.6	0.0	0.17
1999	12.3	0.5	4.01
2000	10.2	-0.6	-5.44
2001	15.5	0.6	4.16
2002	26.4	2.3	8.86
2003	39.3	7.4	18.73
2004	43.8	7.0	15.92
2005	55.3	4.2	7.60

From Lucas and Moore (2012), "The Student Loan Consolidation Option"

How much choice is too much?

- Options benefit borrowers by increasing flexibility
- But offering too many options can hurt borrowers more than it helps them
- Cost of option paid for in higher rates
- Harder to comparison shop when different loans have different options
- E.g., No points and 4% rate versus 1% in points and 3.75% rate
- Cross-subsidies to borrowers who understand how to use options well from those who are unable to use them optimally
- E.g., Home mortgage prepayment option less useful if you don't qualify for refinancing

How much default risk is optimal?

Should pricing be risk-based?

Low-risk borrowers likely to obtain credit privately

Sweet spot has moderate risk

Collection is expensive. Default harms borrowers. High-risk group is better candidates for grants.

- Risk-based pricing reduces cross-subsidies

MINIMAL RISK MODERATE HIGHER RISK

Product suitability

- No watchdog agency with job of overseeing federal credit products
- This leaves responsibility with Congress and Agencies
- Exception is that CFPB oversees reverse mortgages
- Growing concerns about adverse effects of excessive indebtedness
- For individuals and for the broader economy
- My Uber driver and the FHA
- E.g., student loans, mortgages

Calculation of the Financial Benefits and Who Receives Them

Calculation of the Benefits of SBA 7a

Calculation of the Benefits of the CDFI Fund NMTC

Size of the Project
 Size of the Tax Credit

The tax credit investor puts in $\$ 3 \mathrm{~mm}$ of equity and borrows $\$ 7 \mathrm{~mm}$ to buy " $\$ 10 \mathrm{~mm}$ " of tax credits with a mkt price of $\$ 3 \mathrm{~mm}$. The $\$ 7 \mathrm{~mm}$ in debt is repaid by the project being built

Agency

The NMTCs are awarded at a rate of 39 cents on the dollar of investment They are awarded over a 7 year period resulting in a present value of $\$ 3.1 \mathrm{~mm}$. Banks will pay 80-95 cents on the dollar in cash for them. In this example: 93.5 cents

In this example, the Conventional Development Loan is for $\$ 10$ million dollars, broken down into two parts, a $\$ 7 \mathrm{~mm}$ senior loan at 5% and a $\$ 3 \mathrm{~mm}$ subordinated loan at 13.5%.

The NMTC Loan is broken down into two parts: a senior loan ("A") for $\$ 7 \mathrm{~mm}$ and a quasi-equity loan ("B") of $\$ 3.0 \mathrm{~mm}$. Loan B is funded by the purchase of the tax credits, and the proceeds are transferred to the developer at the end of the 7 year term, typically for $\$ 1,000$.

This is a Treasury based interest rate, and the interest expense is incurred by the reduction of tax revenue annually once the TCs are fully used.

The operating cost represents the cost of underwriting the Agency application
The $\$ 3.9 \mathrm{~mm}$ is the notional dollar value of the Tax Credits awarded over a 7 year period

A Bank would not typically make both the senior and the subordinated loan but for this example it is assumed that one bank does both.

The $.28 \%$ interest expense is based on the small bank rate in CHART 2.6 and is the same for all of the bank's products

The operating cost is lower for the NMTC option because some of the costs are being picked up by the investor

In this case, the bank is exposed to loss in its subordinated note in the conventional loan, but that same credit risk is absorbed by the investor in the NMTC loan

Calculation of the Benefits of the CDFI Fund NMTC (cont.)

Project Developer				In this case, the Project Developer is the umbrella term for the various entities involved in purchasing, building, leasing and/or otherwise managing the property. The collective target is a net return on assets of @ 1.5\%.
Fees	\$1,500,000		\$1,250,000	
Total Revenues	\$1,500,000		\$1,250,000	
Actual Interest Expense	\$750,000		\$500,000	With the NMTC, the Project Developer in this case is also paying interest on
Actual Fee Expense	\$300,000		\$245,000	the quasi-equity "B" Note held by the Tax Credit Investor
Actual Other Costs	\$300,000	3.50\%	\$350,000	These are paid to the Intermediary Bank
Total Costs	\$1,350,000		\$1,095,000	The NMTC option carries more legal and accounting costs
Developer net revenues $\mathbf{\$ 1 5 0 , 0 0 0}$			\$155,000	This example of an NMTC loan effectively takes the element of risk out of the transaction, thereby freeing up and additional $\$ 250,000$ for construction and other project costs.
Funds available for construction	\$ 8,500,000		\$ 8,750,000	
ROA	1.50\%		1.55\%	
ROE (with equity at 15\%)	10.00\%		10.33\%	Here the developer's equity goes to the predevelopment costs and the full
Tax Credit Investor				\$10mm is the hard cost of the project fully bank financed.
Interest received (NMTC B Note)		5\%	\$150,000	The TC investor in this case is charging interest on the quasi-Equity B Note as well as getting the tax credits
Fees received		0\%		
Total Revenues			\$150,000	Operating expenses are primarily legal and accounting fees
Operating Expenses (Fees)		2\%	\$60,000	The investor paid \$10.0mm for tax credits with a present value of \$3.15mm
Total Costs			\$60,000	and mkt value of $\$ 3 \mathrm{~mm}$. The ROE for that part of the transaction is
Gain/Loss on Purchase of Credits			\$150,000	estimated at 7\%
Investor net revenues			\$240,000	This a riskless return: once the tax credit is awarded, the investor has no
ROA			Infinite	further credit or operating exposure to the project and has already made a
ROE			Infinite	return of 4% on the purchase of the tax credits. The interest income over the next 7 years is simply extra.

"Quick and Dirty" Unit Cost Analysis

FINANCE COMPANY

The cost of the loan on a per loan basis (unit cost) is one of the key tools that banks use to determine whether or not to lend to a market segment. Agencies can use it in the same way the bank uses it: to determine whether it fits within their "equity" or subsidy rate parameters. We show how, using a small business loan of $\$ 500,000$ to a 5 year old battery recycling business in the Bronx, "BRB" that has an SBA credit score of 200 and whose principal owners have a combined average credit score of 710

In this example, the BRB small business loan segment might be attractive to the bank if the interest rate is raised at least to 10.36%. That is to allow for the uncertainties associated with going into a new credit segment, plus an underlying goal of generating a higher ROE than that which the lender is currently generating. But the lender will want to be sure that this higher rate is low enough to be: (a) affordable for the borrower; and (b) competitive with other lenders. The issue of competitiveness is critical: banks do not generally gravitate to "one-off" deals because of the higher cost to do them. Moreover it is hard to generate ongoing loan volume with customized transactions. These both are of particular concern in the small business arena, where growth is essential to cover the cost of what is essentially a specialized and expensive discipline.

Product Design: Suitability for the Borrower

What credit product is now available in the market? What elements of the product need to be changed to make it suitable for the target borrower?

Example: Monthly Fixed Payment of Principal and Interest for home mortgages, student loans and small business term loans												
Conventional Credit Product Currently Available in the Market	Amount of the Loan	Annual Interest Rate	PMI if applicable (\%)	Term in Months	Monthly Payment	Borrower Credit Score	Maximum Borrower LTV	Debt Service to Income	Borrower Annual Income \$	Borrower Equity Required \%	Borrower Equity Required \$	
Inputs	\$ 250,000	4.00\%	0.60\%	360	\$1,281.61	680	96.50\%	35.00\%	\$ 43,941	3.50\%	\$	9,067
	We are inputting the minimum guidelines for a conventional loan here. For consumers, the chief focus will be the Debt to Income ratio. For small businesses it will be the debt service coverage ratio. In both asset classes, cash equity invested, LTV and collateral coverage are factors as well, but it is the monthly cash flow coverage that is the key determinant of the suitability of the loan to the borrower. The reason: the borrower's ability to pay principal and interest as scheduled is an integral feature in all loans, while the value of collateral and amount of equity only come into play for those that are foreclosed.											
The Credit Product that the Target borrower needs	Amount of the Loan	Annual Interest Rate	PMI if applicable (\%)	Term in Months	Monthly Payment	Borrower Credit Score	Maximum Borrower LTV	Debt Service to Income	Borrower Annual Income \$	Borrower Equity Required \%		rower uity ired \$
Target Borrower	\$ 250,000	4.00\%	0.60\%	360	\$1,281.61	600	99.50\%	45.23\%	34,000	0.50\%	\$	1,250.00

Prior to making the loan, the lender is typically given three hard numbers: cash equity, borrower income and the amount of the loan (i.e., tuition, price of the house, needs of the business). We are going to alter that interest rate (plus PMI if it is required) and the number of months to see how much the monthly payment can be reduced to ensure a reasonable Debt Service to Income level. In a market where housing prices are rising faster than incomes, there will be pressure to increase the allowable debt service to income ratio. This should be done with care: in addition to the kinds of personal events that upset homebuyer finances, general items like rising interest rates, higher gas prices, insurance and local taxes can put pressure on the payment for consumer loans. There is an even larger range of potential threats to current payments for businesses.

There are alternatives to lowering the rate and/or extending the term. Reducing the amount of the loan is often the first step for the lender. But this may not be an optimal option from a policy standpoint. There are many communities, low income and rural for example, where the cost of building or rehabbing a house exceeds the market value and/or the capacity of local residents to buy under conventional terms.

The borrower credit score is an important indicator of the borrower's general willingness and capacity to pay. The lender can use it as an indicator of how much flexibility should be allowed in the Debt to Income, LTV and cash equity requirements.

Loan Design and Production Assumptions

Interest Rates and Fees

Interest Rate Index (choose 1)	Fed Funds	LIBOR	Prime	Swap	Other ST	6-Mo T Bills	10 Yr Treas	Other LT		
Today's rate (information only)							1.75\%			
What index will you use for pricing loans?	10 Yr Treas									
What spread over the index will the borrower be	2\%									
Will borrower's loan be fixed or floating rate?	Fixed	(click on cell and select from dropdown list)								
Rate Forecast Starting Year	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Index Rate	1.75\%	2.00\%	2.25\%	4.00\%	3.75\%	2.00\%	2.50\%	2.50\%	4.25\%	4.25\%
		Agency	Fees \%				Partner	es \%		
Fees	Origination	Servicing	Guarantee Fee Up Front	Guarantee Fee Ongoing		Origination	Servicing	Other Up Front	Other Ongoing	
	0.00\%	0.00\%	2.00\%	0.00\%		2.50\%		0.00\%	0.00\%	
What loan structure will you use?	Level Payment	(click on cell and select from dropdown list)								
Amortization term, quarters	90	for level payment and balloon loans								
How many quarters before the balloon or bullet comes due:		for balloon and bullet loans	(for balloon loans be than the amortizati	be sure to enter a nu ion term)	ber smaller					
Interest-only period, for interest-only to equal amortization loans:		for Interest-only to equal quarterly								
\# quarters over which IO to equal amortization loans will amortize, after the IO period is over		for Interest-only to equal quarterly								
\# quarters over which equal amortization loans will amortize		for fixed principal quarterly								

Loan Sales

2016	2017	2018	2019	2020	2021	2022	2023	2024
0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
8.00%	8.00%	8.00%	8.00%	8.00%	8.00%	8.00%		

Product Default Risk and Prepayment Characteristics

Probability of default: Probability of prepayment:
(Use this input for stress testing) Additional probability of default:
$\%$ of charge-offs recovered
(as a percentage of the loan amount outstanding at the time of charge-off)

Operating Costs

Operating costs

Operating Costs

NONSTAFF OPERATING COSTS (OTHER THAN GRANTS)	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Marketing	200,000	204,000	208,080	212,242	216,486	220,816	225,232	229,737	234,332	239,019
Origination	-	-	-	-	-	-	-	-	-	-
Underwriting	160,000	163,200	166,464	169,793	173,189	176,653	180,186	183,790	187,466	191,215
Closing	-	-	-	-	-	-	-	-	-	-
Servicing	-	-	-	-	-	-	-	-	-	-
Monitoring	240,000	244,800	249,696	254,690	259,784	264,979	270,279	275,685	281,198	286,822
Default Management	-	-	-	-	-	-	-	-	-	-
Administration	100,000	102,000	104,040	106,121	108,243	110,408	112,616	114,869	117,166	119,509
Total nonstaff operating costs	700,000	714,000	728,280	742,846	757,703	772,857	788,314	804,080	820,162	836,565
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Total Operating Costs per year (you may choose to override)	1,125,000	1,147,500	1,170,450	1,193,859	1,217,736	1,242,091	1,266,933	1,292,271	1,318,117	1,344,479
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Opex as Percent of Principal Outstandin	No agency loans									
Originations per origination FTE	No FTEs									
Originations per underwriting FTE	167	300	500	750	1,000	1,000	1,050	800	750	950
Originations per closing FTE	No FTEs									
Active loans per servicing FTE	No FTEs									
Annual servicing cost per active loan	-	-	-	-	-	-	-	-	-	-
Monthly servicing cost per active loan	-	-	-	-	-	-	-	-	-	-

Exercises

MIT OpenCourseWare
|http://ocw.mit.edu

RES.15-002 Mission and Metrics: Finance Training for Federal Credit Program Professionals Summer 2016

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

