
MATLAB Tutorial 

Chapter 5. File input/output

5.1. Saving/reading binary files and making calls to the operating system


When using MATLAB, either when running a m-file or performing calculations interactively, 
there is a master memory structure that MATLAB uses to keep track of the values of all of the 
variables. This memory space can be written in a binary format to a file for storing the results 
of your calculations for later use. This is often useful when you have to interrupt a MATLAB 
session. The following commands demonstrate how to use this storage option to make binary 
.mat files. 

First, let us define some variables that we want to save. 
num_pts =10; 

Afull=zeros(num_pts,num_pts); 

Afull(1,1) = 1; 

Afull(num_pts,num_pts) = 1; 

for i=2:(num_pts-1) sum over interior points 

Afull(i,i) = 2; 

Afull(i,i-1) = -1; 

Afull(i,i+1) = -1; 

end 

b = linspace(0,1,num_pts)'; 

x = Afull\b; 


whos; display contents of memory 

The "save" command saves the data in the memory space to the named binary file. 
save mem_store1.mat; 

clear all; 

whos; no variables are stored in memory 


ls *.mat display all .mat files in directory 


The "load" command loads the data stored in the named binary file into memory. 

load mem_store1.mat; 

whos; we see that the data has been loaded again 


If we want to get rid of this file, we can use the "delete" command. 

delete mem_store1.mat; 
ls *.mat 

In the commands above, I have used path names to specify the directory. We can view our 

current default directory using the command "pwd". 

pwd displays the current directory 


We can then change to another directory using the "cd" command. 

cd .. move up one directory 

pwd 

ls list files in directory 

cd MATLAB_tutorial; directory name may differ for you 

pwd; ls 




We can also use the "save" command to save only selected variables to a binary file. 
save mem_store2.mat Afull; 

clear all 
whos 

load mem_store2.mat 
whos 

delete mem_store2.mat 

clear all 

5.2. Input/output of data to/from an ASCII file 

First, let use define some variables that we want to save. 
num_pts =10;


Afull=zeros(num_pts,num_pts); 

Afull(1,1) = 1; 

Afull(num_pts,num_pts) = 1; 

for i=2:(num_pts-1) sum over interior points 

Afull(i,i) = 2; 

Afull(i,i-1) = -1; 

Afull(i,i+1) = -1; 

end 


b = linspace(0,1,num_pts)'; 

x = Afull\b; 


whos; display contents of memory 

Now, let us write out the contents of Afull into a file that we can read. 

One option is to use the "save" command with the option -ascii, that writes to a file using the 
ASCII format. 
save store1.dat Afull -ascii; 
type store1.dat view contents of file 

We can also load a file in this manner. The contents of the ASCII file filename.dat are stored in 
the MATLAB variable filename. This is a good way to import data from experiments or other 
programs into MATLAB. 
load store1.dat; 

If we add the option -double, the data is printed out with double the amount of digits for 
higher precision. 
delete store1.dat; 

save store1.dat Afull -ascii -double; 

type store1.dat 


We can use this command with multiple variables, but we see that no spaces are added. 
delete store1.dat; 
save store1.dat Afull b x -ascii; 
type store1.dat view contents of file 
delete store1.dat get rid of file 



MATLAB also allows more complex formatted file input/output of data using commands that 
are similar to those in C. 

First, we list all of the files in the directory. 
ls 

Next, we see create the output file and assign a label to it 

with the "fopen" command that has the syntax 

FID = fopen(FILENAME,PERMISSION) 

where PERMISSION is usually one of : 

'r' = read only 

'w' = write (create if needed) 

'a' = append (create if needed) 

'r+' = read and write (do not create) 

'w+' = create for read and write 

'a+' = read and append (create if needed) 

FID_out = fopen('test_io.dat','w'); 
ls 

Now, we print the b vector to the output file as a column vector using the "fprintf" command. 
In the FORMAT string '\n' signifies a carriage return, and 10.5f specifies a floating point 
decimal output with 5 numbers after the decimal point and a total field width of 10. 
for i=1:length(b) 
fprintf(FID_out,'10.5f \n',b(i)); 
end 

We now close the file and show the results. 
fclose(FID_out); 

disp('Contents of test_io.dat : '); 

type test_io.dat; 


MATLAB's "fprintf" can also be loaded to avoid the need of 
using a for loop 
FID_out = fopen('test_io.dat','a'); 
fprintf(FID_out,'\n'); 
fprintf(FID_out,'10.5f \n',x); 
fclose(FID_out); 

disp('Contents of test_io.dat : '); 
type test_io.dat; 

We can also use "fprintf" to print out a matrix. 
C = [1 2 3; 4 5 6; 7 8 9; 10 11 12]; 

FID_out = fopen('test_io.dat','a'); 

fprintf(FID_out,'\n'); 

for i = 1:size(C,1) 

fprintf(FID_out,'5.0f 5.0f 5.0f \n',C(i,:)); 

end 

fclose(FID_out); 


disp('Contents of test_io.dat : '); 

type test_io.dat; 


We can read in the data from the formatted file using 
"fscanf", which works similarly to "fprintf". 



First, we open the file for read-only. 
FID_in = fopen('test_io.dat'); 

We now read the b vector into the variable b_new. First, we allocate space for the vector, and 
then we read in the values one by one. 
b_new = linspace(0,0,num_pts)'; 

for i=1:num_pts 

b_new(i) = fscanf(FID_in,'f',1); 

end 

b_new 


Now read in x to x_new, using the overloading possible in MATLAB. 
x_new = linspace(0,0,num_pts)'; 
x_new = fscanf(FID_in,'f',num_pts); 
x_new 

Finally, we read in the matrix C to C_new. 
C_new = zeros(4,3); 

for i=1:size(C,1) 

for j=1:size(C,2) 

C_new(i,j) = fscanf(FID_in,'f',1); 

end 

end 

C_new 


fclose(FID_in); 


clear all



