Practice Questions

1. Draw a graph of $f(t)$ that goes up and down and up again. Then draw a reasonable graph of its slope.

2. The world population $f(t)$ increased slowly at first, now quickly, later slowly again (we hope and expect). Maybe a limit ≈ 12 or 14 billion.
Draw a graph for $f(t)$ and its slope $s(t)=\frac{d f}{d t}$
3. Suppose $f(t)=2 t$ for $t \leq 1$ and then $f(t)=3 t+2$ for $t \geq 1$

Describe the slope graph $s(t)$. Compare its area out to $t=3$ with $f(3)$
4. Draw a graph of $f(t)=\cos t$. Then sketch a graph of its slope. At what angles t is the slope zero (slope $=0$ when $f(t)$ is "flat").
5. The graph of $f(t)$ is shaped like the capital letter \mathbf{W}. Describe the graph of $s(t)=\frac{d f}{d t}$. What is the total area "under" the graph of s ?
6. A train goes a distance f at constant speed s. Inside the train, a passenger walks forward a distance F at walking speed S.
What distance does the passenger go? At what speed? (Measure from train station).

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

