
Solutions 

Block 3: Partial Derivatives 


Unit 2: An Introduction to Partial Derivatives 

As is usually the case, any amount of theory is of minimum value 


to the student unless he feels at ease with the type of computa- 


tions that are involved in the implementation of the theory. For 


this reason, we feel it mandatory that this unit begin with an 


exercise which involves the mechanics of taking partial deriva- 


tives. Among other things, it will insure that you understand 


that our rather formal definition of a partial derivative trans- 


lates into a relatively easy computational recipe. 


a. We wish to compute fx(1,2) where f is defined by 


Now the definition of fx(1,2) is 

(If21J 


Notice that (2) essentially says that f is a function of x alone 

since y is being held constant at 2. (This is why we must insist 

that x and y be independent, for if x and y were dependent upon 

one another, we could not vary x and still hold y constant. In 

other words, if x and y are independent, we can let Ay = 0 while 

Ax can be unequal to 0, or we can let Ax = 0 while Ay varies.) 

In other words, as far as (2) is concerned, (1) may have been 


written as 


[We write f(x,2) = g(x) to indicate that f depends only on x. We 

do not write f(x,2) = f(x) since f would then denote two different 

functions. Among other things, the domain of f in the context of 
2f (x,2) would be E while the domain of f in the context of f (x) 


would be E ~ . 
I 
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3.2.1 (L) continued 


The connection between (1) and (3) is 


since in terms of g, (2) may be rewritten as 


Trivially, gl(x) = 2x; hence, g'(1) = 2. Therefore, 

The point is that y could have been held fixed at any value, not 

necessarily 2. As long as y is being held constant, we may think 
2 of x + y3 in the same way as we would think of x2 + c3. In fact, 

this is how we obtained (3), with c = 2. 

With respect to x, the derivative of x2 c3 = 2x. + Hence. 

fx(x,c) = 2x. 

We usually write this as fx(x,y) = 2x, where it is understood that 

y is being held constant. We call the result a partial derivative 

in the sense that since the constant value of y was arbitrarily 

chosen, the value of fx(x,y) will usually depend on y as well as 

on x (even though in this part we chose an example where f de-
X 


pended only on x, in order to keep the arithmetic simple). 


The advantage of beginning with an f whose domain was E~ is that 

we can capitalize on the geometric interpretation. Namely, suppose 

we view f in terms of the graph defined by the surface z = f(x,y) 

shown in Figure 1. If we now say that we want to hold y at the 

constant value yo, we are really defining the plane y = yo. This 

plane intersects our surface along some curve C. We now pick some 

point (xo,yo) in the xy-plane (where yo is the same value as above) 

and we look at the point on the surface which corresponds to this 

point in the plane. That is, we look at P[xoryorf(xo,yo)]. Then 

fx(xo,yo) is simply the slope of the curve C at the point P, pro-


vided, of course, that C is smooth at P. (Notice the possibility 


that the surface can be cut by infinitely many planes which pass 
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3.2.1(L) continued 


through (xo,yo) and are perpendicular to the xy-plane. Each such 


plane will give rise to another curve of intersection C, each of 


which must pass through P. Depending on the "pathology" of the 


surface, it is possible that some of the C's are smooth at P while 


others aren't. The conditions which guarantee that every C is 


smooth at P are discussed in the next unit.) 


Figure 1 


As viewed along the y-axis, C would look like 


Figure 2 


In Figure 2, C appears to be in the xz-plane and have an equation 

of the form z = g(x). This is not quite true since C is in the 
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3.2.1 (L) continued 


plane y = yo which is parallel to the xz-plane, but displaced by 

units from it. That is why Figure 2 must include the descrip- yo 

tive label y = yo. 


Had we chosen a different value of y, say y = yl, we would have 

obtained 

Figure 3 


so that from the y-axis, we would see 


Figure 4 - which is the Figure 5 
same as Figure 2 
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3.2.1 (L) continued 


As we look at either Figure 4 or Figure 5, we see that our curves C 

and C1 are of the form z = g(x) (i.e. independent of y). Yet while 

this is true, we see that the shape of the curve does depend on 

the constant value we choose for y. 

The next stage is that once y = yo is chosen, P is not specifically 

chosen on C until we fix a value of x, say x = x Once this is 
0' 


done, we have 


Figure 6 


Now, fx(xo,y0), if it exists, is simply the slope of C at P. 


That is, 


If L is tangent to C at P, 

its slope is 


Figure 7 
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3.2.1 (L) continued 

Notice from Figure 7 t h a t  P depends on t h e  value  of x Hence,
0' 

even when y i s  f i x e d ,  f x  s t i l l  depends on x. Thus, fx(xo.y0) 
depends on both xo and y Thus, f x  is  a funct ion of both x and y 

0' 
i n  genera l .  

b. 	 fxx(1 ,2)  means 

NOW, s i n c e  

[where (5)  is  obta ined from (4) by "pretending" y is  some cons tan t  

i n  ( 4 ) l .  

From (5), w e  see t h a t  f x  i s  a l s o  a func t ion  of x and y [say,  

f x ( x , y )  = h(x ,y )  1 .  Hence, fxx (x,y) = hx(x ,y ) .  Treat ing y a s  a 

cons tan t  i n  ( 5 ) ,  w e  o b t a i n  

Theref o r e  

c. 	 Our main aim here  is  t o  make s u r e  t h a t  you understand t h a t  t h e  

concept of a p a r t i a l  d e r i v a t i v e  holds f o r  any number of independent 

v a r i a b l e s .  

W e  have 

f (w,x,y,z) = w 2 xy + z3y2 + x 3 zw. 

Again, f (1 ,2 ,3 ,4)  simply means t o  d i f f e r e n t i a t e  f a s  i f  y w e r e
Y 


t h e  only v a r i a b l e  (i.e. vary y while x ,  z, and w a r e  he ld  c o n s t a n t ,  
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3.2.1 (L) continued 

and t h i s  i s  p o s s i b l e  -- a s  long a s  our  v a r i a b l e s  a r e  independent) .  

This  l e a d s  t o  

Theref ore ,  

I n  terms-of t h e  b a s i c  d e f i n i t i o n ,  f (1 ,2 ,3 ,4)  could be computed 
Y 


from 


f Y (1 ,2 ,3 ,4)  = l i m  [ f (1 ,2 .3+~y .4 )AY - f (1.2.3.4)]. 

Ay+O 


A s  f a r  a s  t h e  bracketed  express ion i n  (9) i s  concerned, f i s  a 

func t ion  of  y a lone  s i n c e  x,  w,  and z a r e  "frozen" a t  w = 1, x = 2, 

z = 4 .  

That  is ,  from ( 7 )  

Therefore ,  


f y ( l 1 2 , y . 4 )  = h '  ( Y )  = 2 + 1 2 8 ~ - 


Therefore,  


f (1,2,3,4)  = h '  (3)  = 2 + 384 = 386,

Y 

which agrees  wi th  (8). 
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3.2.1 (L) continued 


This is precisely what we would have obtained by evaluating the 


limit in (9), just as we did to find derivatives when we first 


studied them in Part 1 of our course. 


In fact, to see this pictorially (and this will also show that 

there are graphical ways of interpreting functions of n variables, 

even though these are not what we usually mean by "graphical 

ways"), notice that once w, x, and z are "frozenn at any values, 

we have a function of y only. In our particular example, with 

w = 1, x = 2, and z = 4, we saw that 

and if we were given no further details other than this equation, 


we would not hesitate (we hope!) to graph it as 


Then to indicate that h(y) was obtained only by specifying the 

particular values w = 1, x = 2, and z = 4, we label the above 

graph as: 

Graph of f(w,x,y,z) 
for w = 1, x = 2, z = 4. 
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b. We have 


This defines z implicitly as a function of x and y. Thus, to find 

az 
-we treat y as a constant and differentiate (1) as we usually 
ax 

would by implicit differentiation with respect to x. We obtain 


* 
2 g 3 4 3 az32 ax xy + z y + 52 ax y - sin z -= 0. ax 


Therefore, 


2 4 az 3

(32 xy + 52 y - sin z )  -ax -- -2 Y *  

Therefore, 


3
a z -2 y- =  
32
2 xy + 52

4 y - sin 2' 

* N o t i c e  t h a t  s i n c e  z depends on x ,  t h e  p a r t i a l  d e r i v a t i v e  of  z 
3 xy 

i n v o l v e s  a product  o f  two f u n c t i o n s  o f  x ( s i n c e  y i s  b e i n g  h e l d  
c o n s t a n t ) .  Hence ,  t o  d i f f e r e n t i a t e  t h i s  term w i t h  r e s p e c t  t o  x ,  
we must u s e  t h e  product  r u l e .  
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The main aim of this exercise is to emphasize a point that may not 


be as clear as it should be. Namely, it is very important when we 


take a partial derivative with respect to another variable to know 


exactly what the other independent variables are. Not understand- 


ing this causes a misinterpretation about the relationship between, 

au ax 


say, ax and -au-
Given that u = 2x - 3y, it is easy to see that if we assume that x 

and y are independent variables, -au = 2. Notice that when we say ax 

this we assume when we differentiate with respect to x that y is 


the variable that is being held constant. That is, it might have 

au
been wiser had we written, say, = 2 to indicate that we are 

v
1 

differentiating u with respect to x while y is being held constant. 


Admittedly, this might certainly seem clear from context without 


the more elaborate notation. 


At any rate, we now let v = 3x - 4y. The preliminary point we 

want to make in part (a) is that u and v are also a pair of inde- 

pendent variables if x and y are. 

a. 	We must first define what we mean by saying that u and v are inde- 


pendent, and, as we mentioned earlier, this means simply that we 


may pick a value for either u or v without being committed to a 


value for the other. 


For example, suppose we let u equal a particular constant, say, c. 


Is v in any way restricted by this choice? (A similar discussion, 


of course, would hold if we picked a particular value for v and 


asked whether this restricted the choice of u.) From an algebraic 


point of view, the fact that u = 2x - 3y tells us that once we let 
c + 3  
u = 	c, x = +. Using this relationship and the fact that 

v = 3x - 4y, tells us that v = 3 (9)- 4y. and this in turn 

tells us that no matter what constant value is assigned to c, we 

can make v equal to anything we want just by appropriately choosing 

a value for y. Thus, if we would like v to equal b when u = c, we 

have 
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3.2.3 (L) continued 


Therefore, 


While the algebraic approach works for any number of independent 


variables, we again have a nice pictorial representation in the 


case n = 2. u = c means 2x - 3y = c. 

For arbitrary values of c, 2x - 3y = c is a family of parallel 
2

lines. (In particular, 2x - 3y = c implies y = TX - -3' so that 
2 Cthe slope of the line is 5 and the y-intercept is -5.) v = 	b 

means 3x - 4y = b, and for arbitrary values of b, 3x - 4y = 	b is 
3 b

another family of parallel lines. (i.e., 3x - 4y = b -+ y = - at 

3 bso that the slope of each line is a and the y-intercept is -a.) 
Thus, without specifying either c or b, our lines look like 


@ Every line of the 
form 2x - 3y = c is 
parallel to L1. 

@ Every line of the 
form 3x - 4y = b is 
parallel to L2. 

@ Fixing one of the two numbers b or c 
determines a member of one family of lines 
but not the other. 

b. If we now "invert" the pair of equations 
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3.2.3 (L) continued 


(i.e. , we solve for x and y in terms of u and v) we see from (1) 
that 

Therefore, 


Similarly, 


In other words, 


Since we showed in (a) that u and v are independent variables, we 

may compute -ax in (2) to conclude that au 


- ax Since -au - 2 and -= -4, it appears that (as our textax aU 


Our feeling is that (3) is a disturbing fact to most s

After all, up to now, we have been showing how closely

lus of a single variable parallels that of several var

(3) seems to contradict 
-
the corresponding result of 1-
1du dx
calculus that = . 

 says) 

tudents. 


 the calcu- 


iables, yet 


dimensional 
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3.2.3(L) continued 


This is the point of the elaborate notation when we said that 

au ax
-ax = 2 meant ( )  = 2; and when we said that = -4, we meant 

v
.. 

( )  = -4. Notice that if we change the pairing of the vari- 
v 

ables, algebraic changes take place. That is, ( )  indicates 
\I
1 

that u and v are expressed in terms of x and y, while ( ) indi-
v 

cates that x and y are expressed in terms of u and v. 

As we shall show in parts (c) and (d), what is true is that 

1
and (E) = -. That is, the result of 1- 

.' 

. dimensional calculus is true if we keep the variables properly 


aligned. 


C. TO compute (g ), we are assuming that u and y are being consid- 
X I 

I 


ered as the independent variables and that v and x are being ex- 

pressed in terms of u and y. (We leave it for you to check that 

y and 2x - 3y are indeed independent.) 

To this end, u = 2x - 3y + 

Therefore, 


au
This is in accord with the fact that (=) = 2. 

Y 


d. ( )  implies that we would like to express u in terms of x and v. 
v 

3x From v = 3x - 4y, we see that y = - Putting this in place 4 V. 
of y in the expression u = 2x - 3y leads to 
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3.2.3 (L) continued 


Therefore, 


which checks with our earlier result that (g)= -4. 
v 

Thus, the problem of whether reciprocals are equal or not, depen

on the semantics of what variables are being considered as being

independent. In defense of the usual textbook-type statement th

-au is not equal to -ax a we should point out that when we are workiax u 
in 2-dimensional space, it is usually assumed without further re

ds 

 

at 

ng 

- 

marks that the pair of independent variables are x and y. When we 

then make a change of variables, say, u = u(x,y) and v = v(x,y), 

where u and v also are independent, we recall that such a change 

of variables was to simplify the original problem in one way or 

another. In this context, it seems clear that we shall be either 

expressing x and y in terms of u and v or u and v in terms of x 
and y. There would seldom (though we do not rule out the possi- 

bility) be a time when we would want to express, say, u and y in 

terms of v and x. For this reason, it is usually understood when 

we write -au that the other independent variable is y and when we ax 

write -ax the other independent variable is v. In this context, au 

the textbook remark is correct since (2)need not equal ( g ). 
Y v 

Note 


In this case, we were able to invert the equations algebraically 


to obtain the desired results. In many cases, this can only be 
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3.2.3 (L) continued 


done implicitly. Had we so desired, we could have started with 


and differentiated implicitly with respect to u (meaning that we 


are assuming the other independent variable is v) to obtain 


Therefore, 


In this particular example, our first approach may have seemed 


simpler, but the key is that in the second approach, we were never 


required to solve explicitly for x and y in terms of u and v. 


3.2.4 


2 a. 	Given that u = x - y2 and v = 2xy where x and y are independent 

variables, means that by specifying a particular value for u, say, 
2 u = c, merely implies that c = x - 2y . Thus, for a given value 
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7.2.4 continued 


of c, y 2 = x 2 - c, and we can now let y be chosen at random* simply 

by supplying the appropriate value of x.** 


Pictorially, c = x2 - y 2 is a hyperbola 

(Notice that our diagram 

assumes that c > 0.  If 
c < 0, the role of the x 
and y axes are inter- 

changed, but this has no 

bearing on the following 

remarks.) 

and we have no way of knowing in advance what y is until someone 


supplies us with a value of x. That is, specifying a value for u 


still leaves y unspecified. Hence, y and u are a pair of inde- 


pendent variables. 


We now wish to show that (g)= z.This means that we must 
V 

first express x in terms 6f uJand y. 


From u = x 2 - y2, we obtain, quite simply, that 

u 2 = u + y2. 

Differentiating implicitly with respect to u, holding y constant, 


yields 


*We must be careful to observe that since x 
2 

= y2 + c, we canhot 
solve for x as a real number unless y2 + c >,O (since x2 &0). Thus, 
we must be a bit particular when we say "y may be chosen at random.'* 
What we mean is that once the domain of y is determined from the 
equation, y may be chosen at random within the domain. 

**Notice we must again think in terms of "branches." Namely, a 

permissible value of x determines two values of y, i.e., 


Y =  k c . 
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2 
(since ?Y- = 0 because y and u are the independent variau 

Therefore, 


c. This seems a bit messier since it seems that we must in

Rather than do this algebracially (which can be done -
supply it as a note at the end of this exercise), we pr

the note at the end of Exercise 3.2.3 and differentiate

plicitly with respect to u (holding v constant). In th

-av a = 0 while x and y are functions of u and v. Thus, u 

Therefore, 


Therefore, 


ables). 

vert 


in fact, we 

oceed by 

 (1) im-

is case, 
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Therefore, 

-Note 

In  t h i s  case ,  we can e x p l i c i t l y  express x and y i n  terms of u and 

v - Namely, 

Theref o r e ,  

Therefore, 

2
(where we take t he  pos i t i ve  roo t  s ince  x + y2 cannot be nega t ive) .  
Thus, 

Therefore, 

Therefore, 
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[If we wish, from (3) we have that fix 
= 3- + 
u and accord- 

ingly, we can express (E)v
in (4) completely in terms of u and v. l 

2 2 From the facts that u = x2 - y and = x2 + y , (4) becomes 

which agrees with (2) . 

3.2.5(L) 


One relationship between Polar and Cartesian coordinates takes the 


form 


sin 0 = F. 

Suppose we wish to compute -a e from (1). 
aY 


The point here is again to be careful. Granted that y and r are 


independent (see picture below) the convention is that without a 
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3.2.5 (L) continued 


subscript means (E). In this context, x and y are the inde- 
ay x 


pendent variables, while r and 0 depend on y and x. 


The value of y does 

not restrict the choice 

of r. 


Thus, if we differentiate (I) with respect to y, we must remember 

that r is implicitly a function of x and y (in this case, 

r2 = x2 + y2, but we don't have to know this). 

At any rate, we obtain 


Unless we know how r and y are related, we cannot simplify 
X 

2 2 in (2) . However, since r = x + y2, we have that 

Therefore, 
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Put t ing  (3) i n t o  (2) y i e ld s  

- - =  -
- rL - L 

' g ' x  - rZ cos e r3 coz e 


2 o r ,  s ince  s i n  8 = $, y2 = r2 s i n  8 ,  and, there fore ,  

(E) r2 - r2 s in2e  -- -r2 (1 - s in2e)  = cos e 
= e 3 cos 8 r x r3 cos r 

A s  a check, 

s i n  8 = y r -+

s i n  CI = A. 
hZ+yZ 

Therefore, 

--1 

jXZ -
2 

cos a e y g x 2  + Y 2 )  2~
8 -= 

ay x2 + y2 

- 2 2
X r2 cos 8 cos 0- - =  

3 3=-•rr r 

Therefore, 
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3.2.5 (L) continued 

A s  a f i n a l  no te ,  had w e  looked a t  

s i n  0 = Y-r 

and w r i t t e n  

a e  1 cos  8 -= -
ay r 

t h i s  would have been c o r r e c t  only  had w e  i n t e r p r e t e d  a s  aY 
s i n c e  w e  a r e  varying y b u t  t r e a t i n g  r a s  a cons tan t .  

W e  a r e  assuming t h a t  u = u ( x , y )  and v = v(x ,y )  a r e  independent and 

t h a t  

Therefore,  

Again, and w e  a r e  d e l i b e r a t e l y  be labor ing t h e  p o i n t ,  had w e  
auw r i t t e n  2u -= au 
ay 

2yv, it would have meant t h a t  -= ay (e)v 

A s  a concre te  example i n  which (1)would be  obeyed, l e t  v = x2 and 
2 2 u = xy. Then c l e a r l y  u = y v. I n  t h i s  even t ,  

(g)x= X ,  whi le  ( )  = 0 
X 
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Then (2 ) becomes 

which checks. Notice that there are infinitely many ways of 

choosing u and v so that uZ = y 
2 
v. Namely, pick v = f (x,y) where- 

upon u2 = y2 f(x,y) or u = y m . 

3.2.7(L) 


If the surface S, z = x 2 + y3 does have a tangent plane at 
P(1,2,9), then this plane must contain the line tangent to the 

curve C at P obtained when the plane y = 2 intersects S. As we 

saw in Exercise 3.2.1(L), the slope of this line is zx(1,2) = 

(2x1x,l = 2. Pictorially, 

(Note : We are making 
no attempt to draw 

z = x 2 + y3 at all 
accurately; an accurate 
diagram would add 
nothing to our 

Y discussion.) 

slope of L1 = J = 
x=1 

2 
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pp-


3.2.7 (L) continued 


Vectorizing L1, we have that its slope must equal 2 and the slope 

-+ -+ 

of i + 2k is 2. 

Thus, we may view L1 (since all we care about is slope, not 


magnitude) as the. vector 


In a similar way, the line tangent to C1 at P, where C1 is the 

curve obtained when the plane x = 1 intersects S, must also lie in 

the tangent plane. The slope of this line is z (1.2) = 3y2 I = 12. 
Y y=2 


Again pictorially, 


slope of L2 = -
y=2 

Vectorizing L2 yields 
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+ + 
Since vl and v2,must lie in the tangent plane (where, of course, 


+ + 
we assume that vl and G2 originate at P), their cross product N is 

a vector normal to the plane. Therefore, 


-+ 
Since P(1,2,9) is a point in the plane and N is normal to the 


plane, the equation of the plane is given by 


As a pictorial summary, 


The plane is determined 

+ -t 

by v1 and v2. 


The main point of this exercise in general is that a tangent plane 


replaces the idea of a tangent line when we deal with graphs of 


functions of two independent variables. 
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3.2.7 (L) continued 


What we have shown in this exercise is that if* the surface S 
-
given by z = f (x,y) has a tangent plane at the point P(xo Yo, 

f (xo,yo)) on Sf then this plane must in particular contain two 

special tangent lines (among infinitely many others). One is the 

line tangent to C at P where C is the curve obtained when the 

plane y = yo intersects S. The slope of this line is fx(xo,yo). 

Vectorizing this line leads to 

In a similar way, the line tangent to C1 at P must also lie in the 

tangent plane, where C1 is the intersection of our surface with 

the plane x = xo. The slope of this tangent line is f (x ,yo) and 
Y O  


hence vectorizing it leads to 


-+ -+ -+ 
Then V1 x V2 = N is normal to the plane and ~ ( x ~ , y ~ , f  
(xo,yo)) is 

in the plane, so the equation of the plane is 


where 


Since z is measured to the tangent plane, this equation may be 


written in the more suggestive form 


* N o t i c e  t h a t  i n  t h i s  e x e r c i s e  we k e e p  t a l k i n g  a b o u t  w h a t  h a p p e n s  
i f  t h e r e  i s  a t a n g e n t  p l a n e .  The i d e a  i s  t h a t  we c a n n o t ,  a s  y e t ,  
b e  s u r e  t h a t  t h e  s u r f a c e  h a s  s u c h  a  t a n g e n t  p l a n e  ( w h e r e  t a n g e n t  
p l a n e  i s  a s  d e f i n e d  i n  t h e  t e x t ) .  I n  t h e  n e x t  u n i t ,  we s h a l l  d i s -  
c u s s  c o n d i t i o n s  u n d e r  w h i c h  we c a n  b e  s u r e  t h a t  t h e  s u r f a c e  d o e s  
p o s s e s s  a t a n g e n t  p l a n e  ( i . e . ,  when t h e  s u r f a c e  i s  " s u f f i c i e n t l y  
smoo th"  i n  a n e i g h b o r h o o d  o f  t h e  p o i n t ) .  F o r  now, we h a v e  a r t -

,

f u l l y  dodged t h i s  i s s u e  by s i m p l y  a s k i n g  wha t  t h e  t a n g e n t  p l a n e  
wou ld  l o o k  l i k e  if i t  e x i s t s .  I t  h a p p e n s  i n  t h i s  p a r t i c u l a r  e x e r -
c i s e ,  t h a t  t h e  t a n g e n t  p l a n e  d o e s  i n d e e d  e x i s t .  
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3.2.7 (L) continued 

a z aNotice t h a t  Ax sugges t s  t h e  change i n  z due t o  x ,  while -z AyaY 
sugges t s  t h e  change i n  z due t o  y. Since x  and y a r e  independent,  
a z a- zAx + - Ay sugges t s  t h e  t o t a l  change i n  z .  The reason t h a t  ax ay 

appears r a t h e r  than Az is  t h a t  i n  t h e  t angen t  p lane  "tan 

a z and - a r e  cons tan t s .  ( I n  o t h e r  words, j u s t  a s  
ay 

wi th  c a l c u l u s  of a  s i n g l e  v a r i a b l e ,  2
2

Ax i s  no t  Ay b u t  Aytan s i n c e

i n  genera l  i s  a  v a r i a b l e  q u a n t i t y ,  and i s  cons tan t  only along 

t h e  t angen t  l i n e . )  

In  any even t ,  a f t e r  it has been der ived once ( t o  convince yourse l f  

i t ' s  c o r r e c t ) ,  equat ion  ( 3 ) ,  i n  t e r m s  of  t h e  above d i scuss ion ,  

should be easy  t o  memorize. 

We have 

Therefore,  

Therefore ,  

 



Solutions 

Block 3: Partial Derivatives 

Unit 2: An Introduction to Partial Derivatives 


3.2.8 continued 


Therefore, 


a,] a Y = g

Therefore, 


a. 	 There is no reason why the equation of a surface must have the 

form z = f(x,y). There will be times when the best we can do is 

express z as an implicit function of x and y, in which case the 

surface has the equation h(x,y,z) = 0. There will be other times, 

such as in this exercise, when the equation will be given in the 

form x = g(y,z). What we are asking in this exercise is what the 

equation of the plane tangent to this surface at the point 

P(g (yo, zo) ,yo, zo ) will be, in terms of derivatives with respect 
to y and z (since the form of the equation makes it easier to 

differentiate with respect to these two variables). We probably 
ax ax
expect that Axtan = - Ay + -az Az. aY 


To see that this is true "from scratch," notice that the form of 


our equation makes it advisable from a graphical point of view to 


let the x-axis denote the height (rather than letting the z-axis 


do this). Remembering the orientation of the axes, we have 




- - - -  
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3.2.9 (L) continued 


X 


(i.e., rotating x into y 

must turn a right handed 

screw in the direction of z) 


(Notice that in this 

orientation, points are more 

naturally labeled (y,z,x), 
even though any consistent 

scheme suffices.)


> z 
Y'Y, 


z=z0 


slope of L1 = xy (yo.zo) 

-+ + 
Therefore, V1 -- ? + xY(yofzo)i 

slope of L2 = xZ(yorzo) 

-b -b t 
Therefore, V2 k + x ~ ( ~ ~ ~ z ~ )= 1 

Therefore, 
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3.2.9(L) continued 

Therefore,  

is  t h e  equat ion  of  t h e  tangent  p lane .  

Again t h e r e  was no need t o  use  t h e  o r i e n t a t i o n  (y ,z ,x)  o t h e r  t

t o  conform t o  our  p i c t u r e .  Using t h e  p i c t u r e  allowed us  t o  m i

more simply t h e  previous case  of  z = f ( x , y ) .  For example, i f  

f e e l  more a t  home wi th  t h e  usua l  (x ,y ,z)  o r i e n t a t i o n ,  a l l  w e  n

s a y  i s  

 G i v e n x = e3y-z a t  (1 ,2 ,6 ) ,  w e  have 

Therefore ,  

Hence, from ( a ) ,  t h e  t angen t  p lane  is  

Y - 1 = xZ(1,2,6)Az + X (1,2,6)Ay
Y 

= - ( z  - 6) + 3 ( y  - 2 )  

han 

m i c  

w e  

eed 

b.



Solu t ions  
Block 3: P a r t i a l  Der iva t ives  
Unit  2: An In t roduc t ion  t o  P a r t i a l  Der iva t ives  

3.2.9 (L) continued 

c .  	 Here w e  can check (b) d i r e c t l y .  Namely, 

x = e3y-z , 

X = 	e3y e-Z + 

Therefore,  

z =  	3 y - l n x  

Therefore,  

Therefore ,  

Therefore ,  


x - 3 y + z = l  


which checks wi th  (b) 




MIT OpenCourseWare 
http://ocw.mit.edu 

Resource: Calculus Revisited: Multivariable Calculus 
Prof. Herbert Gross 

The following may not correspond to a particular course on MIT OpenCourseWare, but has been 
provided by the author as an individual learning resource. 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

