
Study Guide Block 2: Vector Calculus

Unit 4: Polar Coordinates I

1. Lecture 2.030

2.4.1

Study Guide
Block 2: Vector Calculus
Unit 4: Polar Coordinates I

2. Read Thomas, Sections 11.1, 11.2, and 11.3.

3. Exercises:

2.4.1(L)

Describe the curve C if its polar equation is $r = \cos \theta$, $0 \le \theta \le \pi$.

2.4.2

The curve C is given by the polar equation

 $\frac{1}{r^2} = 4 \cos^2 \theta + 9 \sin^2 \theta.$

Sketch C by converting its polar equation into the equivalent Cartesian form.

2.4.3(L)

a. Plot the curve C if its polar equation is $r = \sec \theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

b. Plot the curve whose polar equation is $r = \theta$, and then write the equation of this curve in Cartesian coordinates.

2.4.4(L)

- a. (1) The curve C is given by the polar equation $r = f(\theta)$. What can we conclude about the symmetry of C if we know that whenever (r_0, θ_0) belongs to C so also does $(-r_0, -\theta_0)$?
 - (2) With C as above, what can we conclude about its symmetry if we know instead that whenever (r_0, θ_0) is on C so is $(-r_0, \pi-\theta_0)$?
- b. Use the result of (a) together with the information contained in $\frac{dr}{d\theta}$ to sketch the curve whose polar equation is r = sin 20.
- c. What is the Cartesian equation of the curve in (b)?

2.4.5(L)

- a. Let C_1 and C_2 be defined by the polar equations $r = \cos \theta + 1$ and $r = \cos \theta 1$, respectively. Show that C_1 and C_2 have no simultaneous points of intersection.
- b. With C1 and C2 as in part (a), sketch these two curves.
- c. Explain why the results of (a) and (b) are not contradictory.

2.4.6(L)

The curve C_1 is defined by the polar equation $r = \cos 2\theta$, while C_2 is defined by $r = 1 + \cos \theta$. Find all points at which C_1 and C_2 intersect.

2.4.7(L)

Let C denote the curve whose polar equation is $r = \sin \frac{\theta}{4}$, $0^{\circ} \leq \theta \leq 720^{\circ}$. If P denotes the point $(\frac{1}{2}, 240^{\circ})$, does P belong to C? Explain.

2.4.8

Find all points of intersection of the curves C_1 and C_2 if the polar equation for C_1 is $r = 1 + \cos \theta$ and the polar equation for C_2 is $r = 1 + \sin \theta$.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.