CALCULUS REVISITED

PART 2
A Self-Study Course

STUDY GUIDE
Block 4
Matrix Algebra

Herbert I. Gross
Senior Lecturer

Center for Advanced Engineering Study
Massachusetts Institute of Technology

Copyright (c) 1972 by
Massachusetts Institute of Technology
Cambridge, Massachusetts

All rights reserved. No part of this book may be reproduced in any form or by any means without permission in writing from the Center for Advanced Engineering Study, M.I.T.

Study Guide

Block 4: Matrix Algebra

Pretest	$4.1 i$
Unit 1: Linear Equations and Introduction to Matrices	4.1 .1
Unit 2: Introduction to Matrix Algebra	4.2 .1
Unit 3: Inverse Matrices	4.3 .1
Unit 4: Matrices as Linear Functions	4.4 .1
Unit 5: The Total Differential Revisited	4.5 .1
Unit 6: The Jacobian	
Unit 7: Maxima/Minima for Functions of Several Variables	4.6 .1
Quiz	

Solutions

Block 4: Matrix Algebra

Pretest S.4.ii

Unit 1: Linear Equations and Introduction to Matrices S.4.1.1
Unit 2: Introduction to Matrix Algebra S.4.2.1
Unit 3: Inverse Matrices
S.4.3.1

Unit 4: Matrices as Linear Functions
S.4.4.1

Unit 5: The Total Differential Revisited
S.4.5.1

Unit 6: The Jacobian
S.4.6.1

Unit 7: Maxima/Minima for Functions of Several Variables
S.4.7.1

Quiz
S.4.Q.1

BLOCK 4:

MATRIX ALGEBRA

Pretest

1. Solve the matrix equation $A X-B C=0$ if
$A=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right], \quad B=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right], C=\left[\begin{array}{ll}5 & 4 \\ 6 & 5\end{array}\right]$, and $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
2. Find A^{-1} if
$A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 7 & 9 \\ 3 & 9 & 7\end{array}\right]$
3. Consider the system of equations
$\left.\begin{array}{r}x_{1}+2 x_{2}+x_{3}+x_{4}=b_{1} \\ 2 x_{1}+5 x_{2}+3 x_{3}+4 x_{4}=b_{2} \\ 3 x_{1}+5 x_{2}+2 x_{3}+x_{4}=b_{3} \\ 3 x_{1}+4 x_{2}+x_{3}-x_{4}=b_{4}\end{array}\right\}$

How must b_{3} and b_{4} be related to b_{1} and b_{2} for this system to have solutions?
4. Use linear approximations to estimate the point (x, y) near $(3,2)$ for which
$x^{2}-y^{2}=5.00052$
$2 x y=12.00026$
5. Let x be determined as a function of z by the pair of equations.
$\left.\begin{array}{l}x+y+z=0 \\ \frac{1}{3} x^{3}+x-\frac{1}{3} y^{3}-z^{2} y=0\end{array}\right\}$
Compute $\frac{d x}{d z}$.
6. Find the maximum and minimum values of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the pair of constraints that $x^{2}+2 y^{2}+z^{2}=1$ and $x+y=1$.

1. Lecture 4.010

Linearity Revisited	Key Point	By "local" ωz
Linear functions are "nice"!	"Most" functions are "locally" linear	
$\begin{aligned} & y=m x+b \\ & x=\frac{y-b}{m} ; \end{aligned}$	$f(a+\Delta z)-f(a)=$ $f^{\prime}(a) \Delta x+k \Delta x$	but near $x=6$ $\Delta f f_{r} f^{\prime}(b) \Delta x$.
$\therefore f(x)=m x+b \rightarrow$ f^{-1} exists	where $\lim _{\Delta x \rightarrow 0}=0$ provided of is	Since $f^{\prime}(a)$ need
$\begin{aligned} & \text { "Most" functions } \\ & \text { are } \\ & \text { non-linear but } \end{aligned}$	(continuously) differentiable at $x=a$.	not equal $f^{\prime}(b)$, $\Delta f s \Delta f_{\text {ton }}$ is a local propents

a.

b.

Concept extends to n variables, bat $n=2$ yields a good geometric insight. Example: $\left\{\begin{array}{l}u=z^{2}-y^{2} \\ v=2 x y\end{array}\right.$ defines $f: E^{2} \rightarrow E^{2}$ where $f(x, y)=(u, 0)$. I.e $(x, y) \stackrel{\mp}{\Longrightarrow}\left(x^{2}-y^{2}, 2 z y\right)$	Pictorially, f maps $x y$-plane into ur-plane Major Question: How does f behave near $(2,1)^{2}$ I_{e}, what is - $f(2+\Delta x, 1+\Delta y)^{2}$	$f(2+\Delta x, 1+\Delta y)=$ $\left.\begin{array}{rl} \Delta u_{\text {tan }} & =2 x \Delta x-2 y \Delta y]_{(, i,)} \\ & =4 \Delta x-2 \Delta y \\ \Delta v_{\tan } & =2 y \Delta x+2 x \Delta y]_{(3)} \\ & =2 \Delta x+4 \Delta y \\ \therefore & \text { Near }(2,1,1 \\ \Delta u \approx 4 \Delta x-2 \Delta y \\ \Delta v=2 \Delta x+4 \Delta y \end{array}\right\}$

Lecture 4.010 continued

e.

Study Guide
Block 4: Matrix Algebra
Unit 1: Linear Equations and Introduction to Matrices
2. Read Supplementary Notes, Chapter 6, Sections A, B, and C.
3. Exercises:
4.1.1

Compute the matrix product
$\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)\left(\begin{array}{llll}3 & 6 & 2 & 7 \\ 4 & 5 & 1 & 8 \\ 4 & 7 & 9 & 5\end{array}\right)$
and use this result to show how to express z_{1} and z_{2} in terms of x_{1}, x_{2}, x_{3}, and x_{4} if
$z_{1}=y_{1}+2 y_{2}+3 y_{3}$
$z_{2}=3 y_{1}+y_{2}+2 y_{3}$
and
$y_{1}=3 x_{1}+6 x_{2}+2 x_{3}+7 x_{4}$
$y_{2}=4 x_{1}+5 x_{2}+x_{3}+8 x_{4}$
$y_{3}=4 x_{1}+7 x_{2}+9 x_{3}+5 x_{4}$
4.1.2

Compute
$\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 2 \\ 3 & 4 & 5\end{array}\right)\left(\begin{array}{lll}3 & 4 & 5 \\ 2 & 1 & 2 \\ 5 & 7 & 9\end{array}\right)$ and $\left(\begin{array}{lll}3 & 4 & 5 \\ 2 & 1 & 2 \\ 5 & 7 & 9\end{array}\right)\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 2 \\ 3 & 4 & 5\end{array}\right)$
Then interpret these two products in terms of systems of linear equations.

Study Guide
Block 4: Matrix Algebra
Unit 1: Linear Equations and Introduction to Matrices
4.1 .3

Compute
$\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 2 \\ 3 & 4 & 5\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 2 \\ 3 & 4 & 5\end{array}\right)$
and try to generalize these results.
4.1.4

Compute
$\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 2 \\ 3 & 4 & 5\end{array}\right)\left(\begin{array}{rrr}7 & 3 & -4 \\ -4 & -1 & 2 \\ -1 & -1 & 1\end{array}\right)$ and $\left(\begin{array}{rrr}7 & 3 & -4 \\ -4 & -1 & 2 \\ -1 & -1 & 1\end{array}\right)\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 2 \\ 3 & 4 & 5\end{array}\right)$

Interpret these products in terms of systems of linear equations.
4.1 .5

Compute
$\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right)\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 7\end{array}\right)$
and try to generalize this result.
4.1 .6
a. Compute
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right)$
(continued on next page)

4.1 .6 continued

b. (Optional) Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix and let $E_{i j}(i \neq j)$ denote the $\mathrm{n} \times \mathrm{n}$ matrix each of whose elements on the main diagonal and in the $i^{\text {th }}$ row, $j^{\text {th }}$ column are 1 , and everywhere else are 0 . Describe the products $E_{i j}$ A.
4.1 .7
a. Compute
$\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
b. (Optional) With A and $E_{i j}$ as in 4.l.6, compute $A E_{i j}$.
4.1.8

Compute
$\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right)$
and generalize this result to show how we may multiply each element of a matrix by the same scalar.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

