Unit 3: Inverse Matrices

1. Lecture 4.030 (This lecture will also apply to Unit 4.)

Matrix Algebra Interpretation $\left.\begin{array}{l} y_{1}=x_{1}+z_{2}+z_{3} \\ y_{2}=2 x_{1}+3 x_{2}+4 x_{3} \\ y_{3}=3 x_{1}+4 x_{2}+6 x_{3} \end{array}\right\} \text { (1) }$ is the single matrix equation $\left[\begin{array}{l} y_{1} \\ y_{2} \\ y_{3} \end{array}\right]=\left[\begin{array}{ll} 11 & 1 \\ 23 & 4 \\ 346 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]$	Function Interpretation System (1) mity be, Viewed as $f: E^{3} \rightarrow E^{3}$ where $f\left(x_{1}, x_{2}, x_{1}\right)=\left(x_{1}, y_{2}, y_{3}\right)$ [or $f(x)=y]$ e.g. $\quad f(1,1,1)=(3,9,19)$ $f(-1,1,2)=(2,9,13)$ f and A are identifiable" since $y=f(z)$ and $Y=A X$ conrey equivalent information	\therefore Existence of A^{-1} is equivalont to existence of $£^{-1}$ $\text { e.s }(-1,1,2) \xrightarrow{ \pm}(2,9,3)$ \therefore Since $£^{-1}$ need not exist for a given $\mathrm{f}_{\text {, }}$ A^{-1} need not exist for a siven matrix, A. In other words,

2. Read Supplementary Notes, Chapter 6, Section E.
3. (Optional) Read Thomas, Section 13.3.
4. Exercises:
4.3.1

Let
$A=\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right), \quad B=\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right), \quad C=\left(\begin{array}{ll}5 & 4 \\ 6 & 5\end{array}\right), \quad 0=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$

Solve each of the following matrix equations.
a. $\frac{1}{3} X-A B=C$.
b. $A X-B C=0$.
4.3.2

Let
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, and let $x=\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]$.
Assuming that $a d-b c \neq 0$, solve $A X=I$, where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
4.3 .3

Compute A^{-1} if $A=\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$, imposing any necessary conditions on a or d to insure the existence of A^{-1}. Generalize this result to find A^{-1} if
$A=\left[\begin{array}{ccccc}a_{11} & 0 & \cdot & \cdot & \cdot \\ \cdot & & & & 0 \\ \cdot & & & & \cdot \\ \cdot & & & & \cdot \\ 0 & 0 & \cdot & \cdot & a_{n n}\end{array}\right]$
(i.e., $A=\left[a_{i j}\right]$ where $a_{i j}=0$ when $i \neq j$).

4.3.4(L)

a. Let A and B denote any non-singular 2 by 2 matrices (i.e., A^{-1} and B^{-1} exist). Show that $A B$ is also non-singular and in particular $(A B)^{-1}=B^{-1} A^{-1}$. (Note the order of the factors.)
b. Check (a) when $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$.
4.3.5

Let A denote the matrix
$\left(\begin{array}{lll}1 & 3 & 5 \\ 2 & 7 & 9 \\ 3 & 9 & 7\end{array}\right)$
a. Use the augmented-matrix technique described in the notes to find A^{-1}.
b. If
$y_{1}=x_{1}+3 x_{2}+5 x_{3}$
$y_{2}=2 x_{1}+7 x_{2}+9 x_{3}$
$y_{3}=3 x_{1}+9 x_{2}+7 x_{3}$
express $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ as linear combinations of $\mathrm{y}_{1}, \mathrm{y}_{2}$, and y_{3}.
c. Solve the system of equations

$$
\begin{aligned}
& x_{1}+3 x_{2}+5 x_{3}=8 \\
& 2 x_{1}+7 x_{2}+9 x_{3}=16 \\
& 3 x_{1}+9 x_{2}+7 x_{3}=32
\end{aligned}
$$

4.3.6

Let $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 7 & 9 \\ 3 & 9 & 7\end{array}\right], B=\left[\begin{array}{rrr}0 & 4 & 8 \\ 8 & 2 & 16\end{array}\right]$ and $C=\left[\begin{array}{rr}0 & 8 \\ 4 & 2 \\ 8 & 16\end{array}\right]$
a. Determine X if $A X=C$.
b. Determine Y if $Y A=B$.
c. Repeat parts (a) and (b) with $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 8\end{array}\right]$.
d. Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right], I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, and $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Show that there exist infinitely many matrices X such that $A X=I_{2}$.
e. With A, I_{2}, and I_{3} as in part (d), show that there is no matrix X such that $X A=I_{3}$.
4.3 .7

Find the flaw in the following argument. "Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Replace the first row of A by the sum of the first and the second rows; and replace the second row of A by the sum of the second row and the first row. Call the resulting matrix B. Therefore, $B=\left(\begin{array}{rr}4 & 6 \\ 7 & 10\end{array}\right)$. Since B was obtained from A by the 'permitted' operations described in the notes, it follows that $\mathrm{A} \sim \mathrm{B} . "$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

