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Pretest  

6. 	 The maximum value is  1 and occurs when x = 1 ,  y = 0 ,  z = 0. 

-5 1 - 2The minimum value is  9 and occurs when x = T ,  y - 3 ,  z = 0 .  
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Unit 1: Linear Equations and Introduction to Matrices 


To compute the product of two matrices, we find the term in the 


ith row, jth column by "dotting" the ith row of the first matrix 


with the jth column of the second matrix. (This is why the number 


of columns in the first matrix must equal the number of rows in 


the second matrix). 


Thus, the term in the 2nd row, 3rd column of 


is given by (3,1,2)-(2,1,9) or in terms of the form given in (1) 


Continuing in this way, we obtain 
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4.1.1 continued 


If we now recall that our definition of matrix multiplication was 


motivated by the chain rule for systems of linear equations, 


equation (2) tells us at once that if 


and 


y3 = 4x1 + 7x2 + 9x3 + 5x4 I 
then 


This result may, of course, be obtained directly by replacing yl, 

y Z I  and y 3  in (3) by their values in ( 4 ) .  In fact, this is how we 

arrived at the recipe for matrix products. 
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4.1.2 continued 


Equation (1) tells us that 


and 




Solutions 

Block 4: Matrix Algebra 

Unit 1: Linear Equations and Introduction to Matrices 


4.1.2 continued 


then 


Equation (2) tells us that if 


and 


then 


Note: 

The first part of this exercise shows us that matrix multiplication 


is not commutative. That is, the product of two matrices depends 


on the order in which the matrices are written. (Of course, we 


already knew this in theory since we saw that we could multiply an 
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4.1.2 continued 


m x k matrix by a k x n matrix, but if we interchange the order of 

the factors we are then multiplying a k x n matrix by an m x k 

matrix, and by definition this makes no sense if n # m. The point 

is that when we multiply two n x n matrices, the product makes 

sense regardless of the order of the two matrices, but the product 

may change if we change the order of the matrices.) 

The second part of this exercise shows us why the result of the 

first part should not be surprising. Namely, interchanging the 

matrices is equivalent to interchanging the coefficients of the 

y's with those of the x's. For example, in this exercise, compare 

equations ( 3 )  and (4) with equations (6) and (7). In general, 

such an interchanging of coefficients will affect how the 2's look 

in terms of the x's. A comparison of equations (5) and (8) shows 

how we do get different relationships in this particular exercise. 

In terms of our "game" of mathematics, we observe that once our 


definitions and rules are accepted based on what we call reality, 


we must let the "chips fall where they will"; and the best we can 


do is show in terms of our model why certain "non-intuitive" 


results are actually quite natural. 


Comparing both sides of equation (I), we notice that multiplying 
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4.1.3 continued 


1 1 2.) (1 0 0) 1 1  2 

(2 3 by 1 yields (2 3 2) again. 


3 4 5  0 0 1 3 4 5  


A closer examination of how equation (1) was obtained seems to 


indicate that this result hinged more on the structure of the 


matrix 


than on the matrix 


To check this out, let us replace 


and look at 


We then see that 
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4.1.3 continued 


Since 


denotes any 3 x 3 matrix, we see from ( 2 )  that the result of multi- 

plying any 3 x 3 matrix on the right* by the 3 x 3 matrix 

is the original matrix. 


As for the remaining part of this exercise, we also observe that 


Thus, a comparison of equations (2) and ( 3 )  shows us that if 

*Since w e  have seen that matrix multiplication need not be commu- 

tative, it is important to fix the order of the factors when we 

talk about a matrix product. 




- - 
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4 . 1 . 3  continued 

is any 3 x 3 matrix, then 

(Obviously, there is nothing special about 3 x 3 matrices. That 

is, similar results would apply to if we were dealing with 

2 x 2 matrices, 

if we were dealing the 4 x 4 matrices, etc.) 

Equation ( 4 )  tells us also that the matrix 

commutes with every 3 x 3 matrix. 

Finally, to see what equations (2) and ( 3 )  mean with respect to 

systems of linear equations, we have that if 
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4.1.3 continued 


and 


y1 = 1x1 + ox2 + ox3 


y2 = ox1 + lx2 + ox3 


y3 = ox1 + ox2 + lx3 


then 


z 2  = dx + ex2 + fx3
1 


= gxl + hx2 + ix3
3 


Similarly, if 


and 


y3 = gxl + hx2 + ix3 


then 
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A comparison of (1) and (2) shows us, among other things, that the 


matrices 
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4.1.4 continued 


1 1  2 


(2 3 2) and 


3 4 5  


(:i :! -!)
commute with respect to matrix multiplication. 


In terms of systems of linear equations, equation (1) tells us 


that if 


and 


then 


This, in turn, says that the system of equations (4) "undoes" the 

system of equations (3) , or that (4) is the inverse of (3) . More 

specifically, if we were to take the system (3) and solve expli- 

citly for yl, y2, and y3 in terms of zl, z2, and z3 (and the 

details of this are left to a later unit although the interested 

reader may solve this system himself), we would obtain 
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4.1.4 continued 


Notice that if we replace xl, x2, and x3 in (4) by their values 

in (5 ) , we do obtain equation (6 1 . 
A similar discussion applies to the interpretation of equations 


(2) in terms of systems of linear equations. 


As a final note, let us observe that while it is true that matrix 


multiplication is not commutative, this does not mean that there 


aren't many examples of matrix multiplication in which the multi- 


plication is commutative. What is important is that we be careful 


not to interchange the order of factors in a matrix product since, 


except for certain special cases, the product will depend on the 


order of the factors. 


An n x n matrix is called a diagonal matrix if each entry not on 

the main diagonal (i.e.. each entry aij for which i f j) is zero. 

Thus, equation (1) seems to indicate that the product of two 

diagonal matrices is also a diagonal matrix and that the product 

is obtained by multiplying the diagonal entries term by term. 

More generally 
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4.1.5 continued 


Notice also that since albl = blalI etc., it follows that the 

product of two diagonal matrices does not depend on the order of 

the factors. That is, with respect to matrix multiplication, 

diagonal matrices commute. 

Finally, it is easy to interpret the result about diagonal matrices 


in terms of systems of linear equations. For example, equation 


( 2 )  tells us that if 

and 


then 
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4.1.5 continued 


Equation (1) shows us that the result of multiplying 


on the left by 


is equivalent to adding, term by term, the third row of the matrix 




- - 

Solutions 

Block 4: Matrix Algebra 

Unit 1: Linear Equations and Introduction to Matrices 


4.1.6 continued 


to the first row, and leaving the other rows as is. 


b. 	 If we let Eij (i # j) denote the n x n matrix each of whose ele- 
ments on the main diagonal and in the ith row jth column is 1 and 

everywhere else 0, then E..A simply replaces the ith row of A by 
1 3  


the term by term sum of the ith row plus the jth row. In our 


particular example, we had E13A where 


and the product was the matrix A with the 1st row replaced by the 


term by term sum of the first and third rows. 


To prove this result in general it is best to work abstractly. 

Let erk denote the entry in the rth row, kth column of Eij and let 

ark denote the corresponding element of A where Eij and A are now 

n x n matrices. Now by the definition of Eij, erk = 0 except when 

r = k or r = i and k = j, in which cases erk = 1. 

If we now look at the entry in the rth row, sth column of E..A, 

1 3  

we know that this entry is obtained by dotting the rth row of Eij 


with the sth column of A. That is, in sigma-notation, the entry 


in the rth row, sth column of EijA is given by 


If r # i then erk = 0 except when k = r in which case erk = 

e = 1, so that the sum in (2) reduces to the single term r r 
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(since e = 0 otherwise).rk 

Combining (3) with (2) , we have that the term in the rth row, sth 
column of E..A is a if r # i. But, ars is the term in the rth 1 1  rS 
row, sth column of A, and this demonstrates that the entry of 

E..A in the rth row, sth column is the same as that for A provided 

1 3  
r # i. 

If r = i then e rk is equal to 1 for two different values of k; 
namely, k = r and k = j (since except for the diagonal terms only 

eij is different from 0 and in fact is equal to 1 by definition). 

At any rate, in this case, the sum in (2) reduces to the two terms 

From ( 4 )  , we see that the term in the ith row, sth column of E..A 
1 3  

is obtained by adding the term in the ith raw, sth fi.01~of A to 

the term in the jth row, of s; and this is thesth c o l ~  same as 

sayinq that the i t h  row af EijA is obtained by adaing ULe ith row 

czf A, term by kern, to the jth row of A. 

To see this ietea; mare cmcretely, let us look at E A where EZ323 
and A are both 4 x 4 matr5ces. E23 has 1's along the main diago- 

nal and 0's everywhere else except in the 2nd row, 3rcT mlumn 

where the entry is also 1. Tfius, 

If we look at any row of E23 except the 2nd, we see that multiply- 


ing A on the left by E23 doesn't change A. (Compare with the 


result of Exercise 4.1.3.) For example, the first row of E23A is 


given by 
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4.1.6 continued 


When we multiply the 2nd row of E23 by A, we obtain 


and this is the result of adding, term by term, the 3rd row of A 


to the second row of A. 


In summary, 
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Equation (1) shows us that the result of multiplying A on the 

right by E13 was equivalent to replacing the 3rd column of A by 
the term by term sum of the 3rd and the 1st columns. 

b. 	 Leaving the details to the interested reader (the approach closely 


resembles the approach of part (b) in Exercise 4.1.6), it may be 


shown that if A and Eij are both n x n matrices. then AEij is 


obtained by replacing the jth column of A by the term by term sum 


of the ith and the jth columns, and leaving the rest of A as is. 


An important observation is that E does not commute with A. In 
ij 
particular, E..A involves replacing the ith row of A by the term 


11 	 -
by term sum of-the ith and jth rows; AEii involves replacing the 


jth column of A by the term by term sum of the ith and jth 


columns. 




Solutions 

Block 4: Matrix Algebra 

Unit 1: Linear Equations and Introduction to Matrices 


4.1.8 continued 


More generally, if 


then 


The result in (2) does not depend on the fact that we are dealing 

with 3 x 3 matrices, and accordingly, we may generalize our result 

rather readily to conclude that if we take the n x n diagonal 


matrix all of whose diagonal entries are m and multiply this by 


any n x n matrix A, the result is as if we simply replaced each 


term of A by m times the term. 
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