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In the expression j) , it is assumed that in the paren- (kai

i=1 j=1 


thesized-sum, i is treated as being constant (notice the "flavor" 


of the notion of independent variables). That is. 


Therefore, 


n m 
From (1) we see that x x a i j  is the sum of mn terms, each of 

i=1 j=1 

the form aij where i=l ,...,n and j=l ,...,m. 
While this sum is independent of the order in which we add the 


terms, we still agree to adhere to the given definition for rea- 


sons which will become clearer in Exercise 5.1.4(L). 


Similarly, 


Except for the order, the rnn terms in ( 2 )  are the same as those in 

(1), and the desired result is established. 
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5.1.1 (L) continued 


We would like to conclude our commentary on this exercise with an 

observation that may make it easier for you to visualize what we 

mean by a double sum. Notice that the mn numbers aij where 

i = 1,...,n and j = 1,...,m may be viewed, in matrix fashion, as an 
array of n rows and m columns. That is, 

n m n 
The sum x = x(ail + . . . + aim) may be viewed as the ai 


sum of the sum of each of the n rows in (3). In other words, 


ai 1 + ... + aim is the sum of the terms in the ith row of ( 3 )  and 
we then sum over the n rows. 

Schematically, to find 2 2 a i  j, we have from ( 3 )  , 

i=1 j=1 


sum 

all -'12 - "  + all + ... (all + a12 + ... + aim) 

a21 a22 "' a2m (aZ1 + a22 + ... a2m)+ 

-P anl + ... + -.+ anm) 
+anl l'n2 (anl an2 


n 

On the other hand, to form 2 5ai , we first form -

C a i j  -
j=1 i=1 i=l 


d + ... + a which is equivalent to the sum of the terms in the 
1 j nj 
jth column of (3), and we then sum over the m columns. That is, 

to form Caij, we have 

j=1 i=1 
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5.1.1 (L) continued 


4. 4. 4. 

sum each column + then add the sums of the columns. That is, 

n m m n 
In summary I both x a i  and z a i  are ways of adding 

the terms in ( 3 ) .  In the former case, we first sum the rows and 

then add these results, while in the latter case, we first sum the 

columns and then add these results. 

5.1.2 


a. Using the matrix notation, we have 


Then 
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5.1.2 continued 


while 


Hence, from (1) and (2) 


-
- all a21 a12 a22 a13 a23 (4

+ + + + + 

Without reference to the matrix notation, 


which agrees with (3) . 
b. 	 In this case. aij = ij. i = 1.2.3.4 and j = 1.2.3. Hence. our 

rectangular array is 

Theref ore, 
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. 	In,this case, i = 4, j = 3, and a ij = i + j. Hence, our rectangu- 

lar array is given by 

Therefore, 


5.1.3(L) 


Our main aim here is to establish a few formulas for dealing with 


double sums. 
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5.1.3(L) continued 


Equation (1) shows us that a constant factor may be removed from 


within the double sum. 
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5.1.3 (L) continued 


c. As a check on Exercise 5.1.2, part (b), we have 
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5.1.3 (L) continued 

m terms 

n terms 

Therefore ,  

Notice t h a t  (2) t e l l s  u s  t h a t ,  obvious o r  n o t ,  

e. A s  a check of Exerc ise  5.1.2, p a r t  ( c ) ,  
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5.1.4(L) 


In computing limits of double sums, we may have to contend with 


either of the forms, 


While the order of summation is irrelevant for finite choices of 


m and n, the order may well make a difference for the infinite 


double sum. This should not be too surprising, since this fact 


was true even for single infinite sums (absolute convergence 


versus "plain old" convergence). In any event, when limits are 


involved we must, in general, make sure we add in the indicated 


order. In this particular exercise, notice that our rectangular 


array is given by 


Notice that each row has 0 as its sum. That is, 


for each i. Hence, 


Schematically, 
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5.1.4 (L) continued 


On the other hand, the first column has 1 as a sum, while each of 


the other columns has 0 as a sum. That is, 


m 

z a  = 1 while = 0, for j = 2.3.4 ,...zaij
i 1 

i=l i=l 


Thus, 

Comparing equations (2) and (3 ) , we see that 

x x a i j  = 0 while x x a i j  = 1. 

As an aside, notice that if we sum diagonally as shown below, the 


sum diverges by oscillation. Namely, 
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5.1.4 (L) continued 


1 - 1 0 ..... 
0 1 - 1 ..... etc. 

In other words, the sum is drastically affected by rearrangements 


of the terms. 


The following theorem, stated without proof, gives us a situation 


for which x x a i i  = x x a i i .  Namely, if we let bi denote 

w m 

zlaijI , then if x b .1 converges (i.e. if 2 (21 aij) converges) 

j =1 i=l i=1 j=1 

then 2 c a i j  = 2 g a  i j . This is the analog of absolute 
i=1 j=1 j=1 i=1 

convergence for single infinite sums. From our point of view, a 

major point is that for most of the double series 2 z a i j  we 

i=1 j=1 

w 


encounter in our applications, it is true that 


i=l 

converge. Consequently, in most cases, we can change the order of 


summation without changing the sum (but we must check 


2 (21 ai 1) in each case) . 
i=1 j=1 


In our present example, for a fixed i (i.e., a fixed row in our 


= 1 + 1-11 = 2. That is, if x l a .  . I  = bi, then 
11 


b. = 2. Therefore, g b i  = 2 = w, so that the conditions 2
1 


i=l i=l 


stated in the theorem do not apply. 
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An important corollary of the theorem is that if aij & 0 for each 
m m m m 

i and j [so that x a
ij 

is the same as 1 ai 1 1 then 

i=1 j=1 i=1 j=1 

if 2,zai 2 gaijconverges converges also. and to the 

i=1 j=1 j=1 i=1 


same sum. 


Figure 1 


Least density of PQRS occurs at P(-. 
i-1 j-1 

) since P is the point in 

PQRS nearest the origin. Maximum density occurs at R(:,;) since 

it is furthest from the origin.* 

* N o t i c e  t h a t  n e a r e s t  and f u r t h e s t  a r e  important  o n l y  b e c a u s e  

p= x 
2 + y 2  which i s  t h e  s q u a r e  o f  t h e  d i s t a n c e  from t h e  o r i g i n  t o  

( x , y ) .  

S.5.1.12 
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5.1.5 (L) continued 


Correspondingly, 


Therefore, 


Since m and n are fixed integers, -I is a constant, hence, by mn 
Exercise 5.1.3 (L) , part (a) , 

On the other hand, by part (d) of the same exercise, 


so putting (5) into (4) yields 
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5.1.5 (L) continued 


In Part 1 of our course, we showed that the sum of the first k 

squares was (k+l)(2k+1), and with this information (6) becomes 6 


= [(l + i) + + Y(2 + ;)I.+ 2 (l 

In a similar manner [the only difference being that we use the 

fact that l2 + ... + (k-112 = (k-l)(k)(2k-1)1, we may show that 6 


Putting (7) and ( 8 )  into ( 3 )  yields 



- - -  
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5.1.5(L) continued 


b- Letting n = m = lo6, statement (9) becomes 

(1 - (2 - < M < (1 + (2 +
5 	 3 


Expanding (10) shows that 


L[~- 3(10)-~ + 10-12] < M < $[2 + 3(10)-~+ 
3 


while 


whereupon (11) becomes 


Thus, no matter what the exact mass of the plate is, (12) con-

vinces us that to five decimal places M = 0.66667. 

c. 	 To find the exact value of M [part (b) probably leads us to expect 

2


M = , we return to (9) and compute 
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5.1.5 (L) continued 


One key in evaluating (13) lies in our comments in Exercise 


5.1.4 (L). That is, (13) represents 

and the order of taking limits might affect our answer. The point 


is that 


when a ij >, 0 (which is the case in the present example), so we may 

evaluate lim by letting n and m-km separately, in either order. 

For example, 


Hence, from ( 9  , 

Therefore, 
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The main idea, stripped of the computational details, is that our 


theorems about double sums allow us (just as in the case of the 


calculus of a single variable), to determine the mass M of the 


given plate exactly, and that without using limits, we can find an 


approximation for M accurate to as many decimal places as we may 


desire. 


It should also be noticed that the solution of this problem (again 

just as in the calculus of a single variable) does not require 

that we know anything about taking partial derivatives of functions 

of several (two) variables. To be sure, the arithmetic gets quite 

complicated. Indeed, in the present exercise, the density function 

is the relatively simple x 2 + y2, and yet the arithemtic was 
already on the verge of being overwhelming (and this also happened 

in our study of a single variable; that is, when we found the area 

under the curve y = x2, above the x-axis and between the lines 

x = 0 and x = 1, the computation of the infinite sum was tedious). 

In the next unit, we shall establish a corresponding Fundamental 


Theorem of Integral Calculus for the calculus of several variables, 


and find more pleasant ways of computing masses and other related 


numbers. 


1.  	 The answer here is the same as that in the previous part of this 

exercise, namely -.2 The reason for this is that the double in- 3 
finite sums that we evaluated in part (c) also yield upper and 

lower bounds for the volume of S. That is, if we now use p(x,y) 

to denote the height of the solid S above the point (x,y) in the 

xy-plane, an element of volume of S is bounded between %AxiAy 

and TAX. j 
ij 	1Ayj *  


We shall not belabor the details here (hopefully, they will become 


clearer as we proceed through the block), but we do want to point 

out that there are often many different physical examples that lead 


to the same double infinite sum, and that consequently, evaluating 


one such sum may yield the answer to several different concrete 


problems. More importantly, again just as in the case of Part 1 


of our course, we should learn to understand the double infinite 


sum abstractly and to think of the interpretations given in parts 


(c) and (dl of this exercise as simply two rather common applica- 


tions for which one is interested in obtaining the value of this 


sum. 
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5.1 .6  

Assuming t h a t  f o r  smal l  AAij ,  p i j  % c o n s t a n t ,  we may e v a l u a t e  t h e  

mass of PQRS i n  Figure  1 of t h e  previous  e x e r c i s e  by saying 

Theref o r e ,  

[and by Exerc ise  5 .l.3 ,  p a r t  (b)] , 

(n+l) and = , w e  o b t a i nSince xi = 1 + . . . + n = 2 

from (1) t h a t  

o r ,  more s u g g e s t i v e l y ,  

(:+') 
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and taking the limit in (3) as both m and n approach infinity, we 


conclude that 


In concluding this exercise, we should point out that we have de- 


liberately taken certain liberties in order to emphasize how we 


may arrive at the result without all of the computational details 


of the previous exercise. Unless ample theory is known, however, 


notice that equation (3) leaves a gap in our information that was 


not present in the previous exercise. For example, in obtaining 


the estimate for M given in (3), we do not have both an upper and 


a lower bound for the error in determining M. Rather we have 


assumed that all the error is "squeezed out" as the size of our 


"mesh" goes to zero. The validity of this result lies in a theorem 


(which is the counterpart of the one used in our study of calculus 


of a single variable) that if the density function is continuous, 


the value of M can be found by picking any point in an incremental 


rectangle. That is, while picking the point of minimum density 


and the point of maximum density gives us a good way to estimate 


M by obtaining upper and lower bounds, the exact value of M does 


not depend on the point we choose. 


As far as this exercise is concerned, we should point out that this 


problem is very much like the previous one, even though the density 


function is different, in the sense that for positive values of x 


and y, xy is minimum when both x and y are minimum, and maximum when 


both x and y are maximum. In other words, if we again refer to 


Figure 1 of the previous exercise, notice that on each element of 


area, the point of least density still occurs at the lower left 


hand corner of the rectangle, and the point of maximum density 


occurs at the upper right hand corner of the rectangle. Thus, in 


this example, it is very easy to compute the upper and lower 


approximations of M as a function of m and n and then take the 


limit as both m and n approach infinity. These details are left 


for the interested reader, but it is easily checked that this pro- 


cedure "validifies" our technique of using (3) to deduce the exact 


value of M. 


S.5.1.19 
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