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AN INTRODUCTION TO MATHEMATICAL STRUCTURE 


Introduction 


In recent times, there has been considerable emphasis placed on the 


concept of mathematical structure. One motivation for this is that it 


often happens that two apparently different topics are based on the 


same rules. Thus, if we assume that we accept only those consequences 


which follow inescapably from-the rules, then as soon as two different 


"models" obey the same rules it follows that something that is a con- 


sequence in one model will be an inescapable consequence in the other 


model. In other words, once we have proven a result in bne model, the 


proof automatically holds in the other. This affords us a remarkable 


short cut in studying topics which have the same structure as preci- 


ously-studied topics. For this reason alone (although there are 


others which we shall see as our course unfolds), it would be worth- 


while for us to study mathematical structure. 


In case our discussion seems devoid of any practical application, let us 


review what we have said in terms of a situation which has occured in 


Part 1 of our course. Specifically, let us revisit the study of area. 


We mentioned that it was easy to define area, subjectively, as the 


amount of space contained in a region. The trouble was that this 


definition from a computational point of view, gave us preciously 


little with which to work. So we set out to find a more practical 


way of computing area by getting a more objective definition which 


still agreed with what we believe& to be true intuitively (subjectively). 


To this end, we essentially imposed three rules on area, rules which 


were based on properties that we felt certain applied to area. 


(1) 	The area of a rectangle is the product of its base and height. 


(2) 	If one region is contained within another, the area of the con- 


tained region cannot exceed that of the containing region. 


(3) 	If a region is subdivided into a union of mutually-exclusive 


parts, then the area of the region is equal to the sum of the 


areas of the constituent parts. 


Once these three rules were imposed, we applied nothing but accepted 


principles of mathematics to deduce inescapable conclusions. We not 


only relived the ancient Greek experience of computing areas; we also 


showed that the acceptance of the three rules led to a truly marvelous 


relationship between areas and differential calculus which culminated 


in the two fundamental theorems of integral calculus. 




- - 

But, t h e  r e a l  advantage of t h i s  s t r u c t u r a l  approach was y e t  t o  come1 

In  p a r t i c u l a r ,  when we decided t o  study volume, we found t h a t  with 

appropria te  changes i n  vocabulary we could g e t  t he  same th ree  r u l e s  

of a rea  t o  apply f o r  volume a s  well .  In  f a c t ,  our only change i n  t he  
second and t h i r d  r u l e s  was t o  rep lace  t he  word "area" by t h e  word 

"volume." Namely, 

( 2 ' )  I f  one region is contained i n  another,  the  volume of t he  con-
ta ined region cannot exceed t h a t  of t h e  containing region. 

(3 ' )  I f  a region is subdivided i n t o  a union of mutually-exclusive 

p a r t s  then t h e  volume of the  region is equal t o  t h e  sum of t he  volumes 

of t h e  cons t i t uen t  pa r t s .  

As f o r  our f i r s t  r u l e ,  w e  no t  only rep lace  "area" by Yvolume" bu t  w e  

a l s o  rep lace  "rectangle" by "cylinder." W e  then ob ta in  

(1') The volume of a cyl inder  is the  product of ( t he  a r ea  o f )  its 

base and height .  

The key po in t  was then t o  remember t h a t  r u l e s  w e r e  r e l a t i onsh ips  be- 

tween t e r m s  and t h a t  i f  t h e  terms changed bu t  t h e  r e l a t i onsh ips  d idn ' t ,  

the s t r u c t u r e  was unaltered.  W e  w e r e  ab l e  t o  prove many r e s u l t s  

about volume "instantaneously," s o  t o  speak, merely by recopying t h e  

corresponding proof f o r  areas.  In  f a c t ,  t h i s  is why w e  r e f e r r ed  t o  

volume i n  our l e c t u r e  a s  "3-dimensional area ."  

Equally important i n  t h i s  study was t h e  discovery t h a t  i f  t he  r u l e s  

a r e  d i f f e r e n t ,  t h e  s t r u c t u r e s  may vary. In  t h i s  respec t ,  we showed 

t h a t  w e  had t o  be a b i t  wary when w e  s tud ied  arclength because, i n  

t h i s  case ,  w e  could no t  hand down t h e  same th ree  r u l e s  j u s t  by r e r-
placing "area" by "length." In  p a r t i c u l a r ,  had w e  t r i e d  t h i s  with 
(2 )  , we would have obtained 

(2") I f  one region is contained within  another,  t h e  length (perimeter)  

of t h e  contained region cannot exceed t h a t  of t he  containing region. 

I t  happens, a s  we showed, t h a t  t h i s  need not  be t rue .  I n  many cases ,  

t h e  region with -l e s s e r  a rea  may have a g r ea t e r  perimeter. 

In  t e r m s  of a t r i v i a l  bu t ,  hopefully,  informative example, haa we 

agreed t o  accept  ( 2 " )  a s  a ru l e ,  weshouldhave been forced t o  accept 

such inescapable consequences as :  t he  circumference of a c i r c l e  of 

radius  R i s  indeterminate i n  t h e  sense t h a t  it can be made t o  exceed 

any given number. Namely, given t h a t  number we in sc r ibe  a region i n  
t he  c i r c l e  whose p e r i m e t e r  exceeds t h a t  number. Since t he  region is 

contained i n  t he  c i r c l e ,  ( 2 ' )  forces  us t o  conclude t h a t  t h e  length of 

t he  c i r c l e  (circumference) exceeds t h e  length of t he  inscr ibed region! 



More c o n c r e t e l y ,  t o  "prove" t h a t  t h e  circumference of  a c i r c l e  whose 

r a d i u s  i s  1 exceeds10 (and t h i s  must be  f a l s e  s i n c e  w e  "know" t h e  c i r -  

cumference is  2 7 ~o r  a l i t t l e  more than 6 b u t  less than 71, w e  t a k e  a  

p i e c e  of  s t r i n g  whose l e n g t h  is ,  s.ay, 11 inches  and c u r l  it around 

i n s i d e  t h e  circle. P i c t o r i a l l y ,  

11" p i e c e  of s t r i n g  i s  wrapped around i n s i d e  
a c i r c l e  whose r a d i u s  i s  1". 

Then, from ( 2 " ) ,  w e  conclude t h a t  t h e  circumference of t h e  c i r c l e  

exceeds 11 inches .  Not ice  t h a t  whi l e  t h e  r e s u l t  i s  indeed f a l s e ,  it 

i s  s t i l l  an inescapab le  consequence of  t h e  r u l e s  w e  have accepted.  

I n  any e v e n t ,  t h i s  d i d  n o t  mean t h a t  w e  could n o t  s tudy a rc leng th .  

Indeed, w e  went on t o  s tudy  it i n  r a t h e r  g r e a t  d e t a i l .  What was 

impor tant  was t h a t  whenever t h e r e  was a p roper ty  t h a t  was t r u e  f o r  

e i t h e r  a r e a  o r  volume and which was a consequence of  (2) [ o r  ( 2 ' ) l  

we had t o  e x e r c i s e  c a u t i o n  i n  t h e  s tudy  of  l e n g t h  s i n c e  (2")  was 

n o t  a r e a l i s t i c  r u l e  t o  accep t .  I n  an a b s t r a c t  "game" one need n o t  

rgqu i re  t h a t  t h e  r u l e s  b e  r e a l i s t i c ,  b u t  i n  t h e  "game of l i f e "  where 

w e  t r y  t o  measure and d e f i n e  r e a l i t y ,  it i s  q u i t e  n a t u r a l  t h a t  we 

would i n s i s t  on " r e a l i s t i c "  r u l e s .  

Th i s ,  i n  t u r n ,  l e a d s  t o  the impor tant  concept  o f  d i s t i n g u i s h i n g  be- 

tween t r u t h  and v a l i d i t y ,  where, by v a l i d i t y ,  w e  mean t h a t  t h e  con-

c l u s i o n  fo l lows inescapably  from t h e  r u l e s ,  wi thou t  r ega rd  t o  t h e  t r u t h  

( o r  f a l s i t y )  of t h e  r u l e s ,  and t h i s  t o o ,  w i l l  be  d i scussed  i n  much 

g r e a t e r  d e t a i l  l a t e r  i n  t h e  chap te r .  

To conclude o u r  i n t r o d u c t i o n ,  w e  must now e x p l a i n ,  a t  l e a s t  

from a  m o t i v a t i o n a l  p o i n t  of view, why w e  e l e c t e d  t o  in t roduce  

t h i s  m a t e r i a l  a t  t h e  p r e s e n t  t i m e .  The answer i s  q u i t e  s imple.  In  

t h i s  course ,  w e  s h a l l  be p r i m a r i l y  concerned w i t h  t h e  s tudy of func-

t i o n s  of s e v e r a l  ( i .e . ,  more than one) v a r i a b l e s .  W e  have a l r eady  

s t u d i e d  f u n c t i o n s  of  a s i n g l e  (one) v a r i a b l e ,  and, i n  t h e  con tex t ,  

w e  in t roduced such t e r m s  a s  a b s o l u t e  v a l u e ,  l i m i t s ,  c o n t i n u i t y ,  de-

r i v a t i v e ,  etc. These concepts  w i l l  a l s o  occur (perhaps i n  an a l t e r e d  

form) i n  t h e  s tudy  of s e v e r a l  v a r i a b l e s .  Our p o i n t  is  t h a t  i f  t h e  

s t r u c t u r e  ( t h e  r u l e s  and d e f i n i t i o n s )  a r e  t h e  same f o r  t h e s e  concepts  



as they were in the study of calculus of a single variable then we may 


carry over the previous structure virtually verbatim. In this way, we 


not only have a short cut for studying these "new" concepts but we 


also have the advantage of seeing.more clearly the structure upon which 


everything is based. 


Before we get on with this idea, it is important that the concept of 


structure along with the companion concept of truth and validity be 


understood in their own rights. The remainder of this chapter is 


devoted to this purpose. 


The "Gamemof Mathematics 


In our introduction to mathematical structdre, we have employed words 


like "definitions and rulesW and "inescapable consequences"as though 


we were dealing with a "game" rather than a mathematical concept. The 


analogy is deliberate. For it is our claim that, not only mathematics, 


but any topic in the curriculum can be viewed as a game provided we 


define a gane in the most general terms. 


To see how we should define a game, let us ask ourselves what it is 


that all games, no matter how different they may seem to be, have in 
-
common. In other words, how can we abstractly (meaning without refer- 


ence to any particular game) define a game so that every game is cover- 


ed by our definition? The answer that we shall use, for purposes of 


this course, is that a game is any system consisting of definitions, 


rules, and objectives, where the objectives are carried out as inescap- 


-able consequences of the definitions and the rules by means of strategy. 
Paraphrasing this in terms of a diagram, we have 

-1 IObjectives 


U Definitions 
The interesting thing from our point of view is that this definition 


of a game does indeed make almost any study a game. That is, in any 


study, we define certain concepts, impose certain rules (usually 
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d i c t a t e d  by our  exper ience ) ,  and t h e  o b j e c t i v e  is  then t o  s e e  what 

conclus ions  fo l low ineskapably from our  r u l e s .  

F i r s t  w e  d e f i n e  c e r t a i n  t e r m s ,  b u t  even t h i s  i s  n o t  a s  easy a s  it may 

sound. For example, i n  arithmetic., ,  i t ' i s  c l e a r  t h a t  t h e  b a s i c  "playing 

p iece"  is a number, b u t  how s h a l l  w e  d e f i n e  a number? Cer ta in ly ,  w e  

a l l  know what a number is ,  b u t  any a t tempt  t o  d e f i n e  a number ob jec t ive -  

l y  seems t o  l ead  t o  t h e  c i r c u l a r  reasoning p roper ty  t h a t  sooner o r  

l a t e r  our  b e s t  d e f i n i t i o n  of  number con ta ins  t h e  concept  of number i n  

t h e  d e f i n i t i o n .  This  i s  t r u e  everywhere, n o t  j u s t  i n  mathematics. 

From a non techn ica l  p o i n t  of view, imagine t h a t  w e  a r e  back a t  t h e  

dawn of consciousness and w e  a r e  t r y i n g  t o  i n v e n t  our  f i r s t  language. 

C lea r ly  t h e  f i r s t  o b j e c t  t h a t  w e  dec ide  t o  name cannot  be def ined i n  

terms of o t h e r  named o b j e c t s  because t h e r e  a r e  none. While we can quib- 

b l e  a s  t o  what words w i l l  be  "undefinable" and what words won't  be,  t h e  

f a c t  i s  t h a t  c e r t a i n  concepts  a r e  too  elementary (meaning b a s i c ,  n o t  

s imple)  t o  be de f ined  o t h e r  than by c i r c u l a r  reasoning.  These concepts  

a r e  c a l l e d  p r i m i t i v e s ,  and i n  a r i t h m e t i c ,  number i s  a p r imi t ive .  In  
\ 

geometry, examples of  p r i m i t i v e s  would be  p o i n t  and l i n e .  

Once we have o u r  p r i m i t i v e s ,  w e  may then d e f i n e  o t h e r  terms i n  terms 

of our  p r i m i t i v e s .  For example i s o s c e l e s  i s n o t  p r i m i t i v e .  W e  c a l l  a 

t r i a n g l e  i s o s c e l e s  i f  it has  two s i d e s  of  equal  length .  Thus, i s o s c e l e s  

can be de f ined  i n  t e r m s  of  t r i a n g l e s  and l eng ths .  W e  s h a l l  d i scuss  

any a d d i t i o n a l  examples a s  they may occur  i n  t h e  con tex t  of our  course.  

Next, w e  i n v e n t  r u l e s  (which f o r  some reason a r e  always r e f e r r e d  t o  

a s  axioms o r  p o s t u l a t e s )  which t e l l  us how t h e  va r ious  t e r m s  i n  our  

"game" a r e  r e l a t e d .  These r u l e s  may be  motivated by what w e  b e l i e v e  

t o  be t r u e  i n  r e a l - l i f e ,  b u t  even t h i s  is  n o t  mandatory. What is  

impor tant  i s  t h a t ,  f o r  example, s i n c e  number is  a p r i m i t i v e  concept ,  

any a t t empt  t o  d e f i n e ,  say ,  e q u a l i t y  of numbers, o r  t h e  sum of two 

numbers, o r  t h e  product  of  two numbers, might i t s e l f  be  s u b j e c t i v e .  

To avoid t h i s  problem, w e  ag ree  t o  use  only c e r t a i n  s p e c i f i c  " f a c t s "  

about  t h e s e  concepts ,  which we in t roduce  i n t o  t h e  game a s  r u l e s .  In  

t h i s  way, w e  can make an o b j e c t i v e  s tudy  of a s u b j e c t i v e  concept.  I f  

t h i s  s e e m s  d i f f i c u l t ,  n o t i c e  t h a t  we have a l r eady  done t h i s  when w e  

s t u d i e d  a r e a .  The concept  of " t h e  amount of space" was s u b j e c t i v e ,  

b u t  t h e  t h r e e  axioms w e r e  q u i t e  o b j e c t i v e ,  and t h e s e  axioms were a l l  

w e  used i n  d e r i v i n g  o t h e r  p r o p e r t i e s  o f  a rea .  

Our o b j e c t i v e s  w e r e  then  inescapab le  conclus ions  based on our d e f i n i -

t i o n s  and r u l e s .  Not ice  t h a t  our  aim is n o t  t o  a sk  whether a conclu-

s i o n  is  t r u e  b u t  r a t h e r  whether it i s  an inescapable  consequence of 
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I I 
our definitions and rules. For example, long before the time of 


Euclid, practical men knew (and used the fact) that the base angles of 


an isosceles triangle were equal. The contribution of Euclid was that I*
he showed that this result could be deduced from "rules of the game." 

That is, in terms of our game idea, a conclusion is only a conjecture 

until we show that it is an inescapable consequence of our definitions 

1 

and rules. The process by which we decide that the conclusion is in- 


escapable is known as a proof (which corresponds to the "strategy" 
 I !  
part of the game). It is this proof together with the conjectured 


-.conclusion that becomes known as a theorem or proposition. 
 I
It is of interest to note that the words "axiom," "postulate," "proof," 


and "theoremH inevitably suggest the typical high school geometry 


course. And, in fact, the geometry proof is an excellent example of 1
mathematical structure, clearly seen. What the "new math" in' our 

schools now emphasizes, however, is that we can make a similar "gamen 

out of the other mathematical topics. Just as in plane geometry, we 
I 

can apply a statement-reason format in any branch of mathematics to 

proceed logically to an inescapable conclusion from a collection of 


definitions, rules, and hypotheses.* 


a 
C R 

Truth and Validity 


Thus far in our discussion of mathematical structure, we have avoided 

I

any discussion of truth and validity. There is an important, if some- 


what subtle, difference between these two terms which we shall examine 


in this section. 

1 

Before we do this, however, perhaps it would be wise to try to describe 


the two concepts informally. To begin with, truth involves a subjec- 

u 


tive value judgement concerning particular statements. As such, truth 


is a rather nebulous thing. It is controversial in the sense that dif- 


ferent people will make different judgements (for example, is it true 


I 
*The mean ing  o f  h y p o t h e s i s  o c c u p i e s  a s p e c i a l  r o l e  w i t h i n  t h e  


9 
s t r u c t u r e  o f  a game. I n  e v e r y  game, when we s t u d y  s t r a t e g y  we con-

s i d e r  wha t  we s h o u l d  d o  i f  a  p a r t i c u l a r  e v e n t  o c c u r s .  The p a r t i c u l a r  

e v e n t  n e e d  n o t  a c t u a l l y  happen ;  a l l  t h a t  we wan t  t o  b e  s u r e  o f  i s  t h a t  

i f  i t  d o e s  h a p p e n ,  we know w h a t  t o  do. I n  t h i s  c o n t e x t ,  we r e f e r  t o  


I 
s u c h  a n  e v e n t  a s  a  h y p o t h e s i s .  F o r  example ,  when we s a y  " t h e  b a s e  

a n g l e s  o f  a n  i s o s c e l e s  t r i a n g l e  a r e  e q u a l "  t h e  f a c t  t h a t  t h e  t r i a n g l e  
i s  i s o s c e l e s  i s  c a l l e d  t h e  h y p o t h e s i s ,  f o r  c e r t a i n l y ,  g i v e n  a t r i a n - 

g l e  a t  random, t h e r e  i s  no r u l e  o f  t h e  game t h a t  s a y s  i t  mus t  b e  i s o s -  


I

c e l e s .  I n  s t i l l  o t h e r  w o r d s ,  i f  t h e  s t u d e n t  a s k s  how we know t h e  t r i - 

a n g l e  i s  i s o s c e l e s ,  we s i m p l y  t e l l  him t h a t  we w e r e  t o l d  s o ,  o r  i t  
was g i v e n  i n f o r m a t i o n ,  o r  i t  was t h e  h y p o t h e s i s  i n  t h i s  example .  
 I

1.6 y 1

I 
-



that a particular painting is beautiful?). Moreover, truth is also 


subject to change. That is, what is believed to be true at one time 


may be believed to be false later. 


It is in the latter context that one can begin to sense the idea of 


validity. That is, do we change our minds about the truth of a 


statement? In many cases it is that someone presents us with evidence 


that we hadn't considered before. In other words, part of our concept 


of truth seems to involve not just the statement involved, but the 
-

reasoning by which we arrived at the statement. In short, we have 


certain "evidence" that we believe to be true and we then ask on the 


basis of the evidence whether the conclusion is justifiable. In still 


other words, we want to know whether the conclusion follows inescapably 


from our assumed beliefs. 


This is what validity is all about. It is the study of determining 


whether a statement follows as an inescapable consequence of other 


statements. As far as terminology is concerned, the statement being 


tested is called the conclusion, and the assumed statements are called 


the premises (or simply the assumptions). The process of testing whether 


the conclusion follows inescapably from the premises is called the 


argument. In this context, truth is used to describe the premises and 


the conclusion, while validity is used to describe the argument. If 


the conclusion follows inescapably from the assumptions, the argument 


is called valid regardless of the truth of the premises or the conclu- 


sion, and if the conclusion doesn't follow inescapably from the premises 


then the argument is called invalid, again regardless of the truth of 


either the premises or the conclusion. 


The main idea is that truth and validity are entirely different concepts, 


related, however, by the basic belief that if the premises are true and 


the argument is valid than the conclusion must also be true. We must, 


however, be careful not to interpret our last statement too liberally. 


It is possible that an argument can be valid and the conclusion be 


true, even though the premises are false (this is why no number of ex- 


periments ever prove a theory to be correct; the correct results could 


be occurring despite wrong assumptions). By way of an example, the 


true statement all bears are animals follows inescapably from the assump- 


tions that all bears are trees and all trees are animals; yet each of 


the assumptions is false. Again, emphasizing the correct connection 


between truth and validity in a valid argument we cannot obtain a false 


conclusion from true premises. 


Hopefully, the next diagram summarizes the two concepts succinctly. 




Premises Iwhich may 

consist of 

definitions. arqumen t Conclusion 

rules, and 	 thypotheses. 


t 	 I t
Truth 	 Validity Truth 


The point is that we can have many combinations involving truth and 


validity. In fact, in a valid argument we can have any combination 


of truth and falsity for the assumptions and the conclusions, except 


as we have mentioned, in a valid argument the conslusion must be true 


as soon as the assumptions are. 


Rather than continue in this expository tone, perhaps it would be bet- 


ter at this time to illustrate these ideas in terms of some actual ex- 


amples. To this end, we have: 


(1) All Bostonians are New Yorkers. 


All New Yorkers are Texans. 

All Bostonians are Texans. 


1n.this case, our argument is called valid since the conclusion does 


follow inescapably from the assumptions, even though the conclusion is 


-false. (To think of this from another point of view, imagine a game 

wherein there are three types of "pieces" called Bostonians, New Yorkers, 

and Texans. If we impose as rules of our game that in this game, all 

Bostonians are New Yorkers, and that all New Yorkers are Texans, then 

it is an inescapable conclusion in this game that all Bostonians are 

Texans.) 

(2) 	All Frenchmen are European. 


All Germans are European. 


All Frenchmen are Germans. 


In this case our conclusion is false and the argument is invalid (i.e., 


not valid) since it does not follow inescapably from our assumptions. 


( 3 )  	 All Parisians are Europeans. 


All Frenchmen are European. 


All Parisians are Frenchmen. 




-- 

In this case the assumptions and the conclusion are all true, yet the 


argument is invalid since the truth of the conclusion does not follow 


merely from the truth of the assumptions. In fact, structurally, (2) 


and 	( 3 )  have the same form. Namely, the first set is a subset of the 

second set, the third set is also -a subset of the second set - from 

which it need not be true that the first set is a subset of the third 


set. Pictorially, 


A's 	are B's but it is false that all A's are C's. 

All C's are B's 


I 

The fact that the conclusion may be true is not as important as that 
it need not be true. Mathematically speaking, our aim is to draw ines- 


capable conclusions, and in such a quest we must demand that our rules 


of logic be restricted to those which are always true. 


; . ri { .> 
( 4 )  	 All Parisians are ~r&chmen. 

All Frenchmen are Europeans. 

All Parisians are Europeans. 

In this case our conclusion is true and the argument is valid. In terms 


of a more symbolic approach, both (1) and (4) have the form: All A's 


are B's, All B's are C's. Hence all A's are C's. Again, in terms of a 


picture, 


By this time it should begin to appear obvious that the distinction 


between truth and validity is of paramount importance in any scientific 


investigation (social science as well as physical science). To make 


sure that you have adequate opportunity to understand this distinction, 


we have supplied some exercises in order that you may practice. Other 


than this, we shall not explore further, in this course, the philosophical 




implications of what is meant by truth, nor shall we introduce an 


in-depth course in logic so that we may better understand the full 


meaning of inescapable (that is, as simple as it might seem, the 


concept of "inescapable" is quite sophisticated, for we must come 


to grips with that subtle distinction between that which is truly 


inescapable and that which is not inescapable but we don't know how 


to avoid the conclusion). These topics are indeed important, but 


for the purposes of this course we shall assume that our previous 


remarks are sufficient. 


We would, however, like to close this section with one more observa- 


tion; an observation which is particularly pertinent to the idea of 


structure. 


Looking at mathematics in the light of what we have said about truth 


and validity, we can now make a distinction between "pure" and "applied" 


mathematics. If the axioms and postulates happen to be based on what 


we believe to be reality, the resulting structure is referred to as 


applied (i.e., practical) mathematics. If the rules are merely con- 


sistent but do not correspond to reality, then we say that the struc- 


ture is pure (or abstract) mathematics. 


In making this distinction, however, we should remember that, struc- 

turally, pure and applied mathematics are identical. And, in fact, 

a model that seemingly bears no relationship to the real world at 

present may turn out to be a "realisticn model in the future. A 

classical example of this is Lobachevsky's geometry which was pure 

math from its invention in 1829 until 1915 at which time Einstein 

noticed that it served as a realistic model for his theory of 

relativity. 

D 


Algebra Revisited 


Surprising as it may seem, the traditional sequence of high school 


algebra courses may be viewed as a very elegant example of the game 


idea. Indeed, algebra may justifiably be called the game of arithmetic. 


To begin this game of arithmetic, let us assume that we are familiar 


with the real number system wherein we will take as our primitives 


equality, addition, and multiplication (omitting subtraction and 


division which are not primitive since they can be defined as the 


inverses of addition and multiplication respectively). 


As we mentioned in Section B, to keep our game objective, we do not 


give specific verbal definitions of these primitive concepts but 




r a t h e r  l i s t  t h e  r u l e s  which w e  w i l l  use  t o  r e l a t e  t h e s e  concepts  s o  

t h a t  w e  have an o b j e c t i v e  s t a r t i n g  p o i n t  from which t o  ded&ce conclu- 

s i o n s .  I n  somewhat o v e r s i m p l i f i e d  form, t h e  i d e a  i s  t h a t  w e  make up t h e  

r u l e s  and t h e  o t h e r  "p laye r s"  ag ree  t o  accep t  them. Once they agree  t o  

t h i s ,  w e  a r e  n o t  allowed t o  invoke any " f a c t s "  i n  t h e  game o t h e r  than 

Thus, our  game of a r i t h m e t i c  might begin  wi th  t h e  fo l lowing f i v e  r u l e s *  

which we hope w i l l  g i v e  t h e  necessary  degree  of o b j e c t i v i t y .  

E-1: 	 For any number b ,  b = b. (The Ref lexive  Rule) 

E-2: 	 For any numbers a and b ,  i f  a = b then b  = a .  (The Symmetry Rule) 

E-3:  	 Given any t h r e e  numbers a ,  b, and c ,  i f  a = b and b = c,  then 
a  = c. (The T r a n s i t i v e  Rule) 

L e t  us  pause b r i e f l y  t o  make a  few remarks about  our  f i r s t  t h r e e  r u l e s  

concerning e q u a l i t y .  E q u a l i t y  i s  a r e l a t i o n-. j u s t  a s  t h e  b r o t h e r  

of , I 1  ''is less than," etc. a r e  a l s o  r e l a t i o n s .  Not every  r e l a t i o n  i s  

r e f l e x i v e .  S t a t e d  i n  a b s t r a c t  terms: i f  w e  w r i t e  aRb t o  abbrev ia te  

"a  is  r e l a t e d  t o  b  by t h e  r e l a t i o n  R," r e f l e x i v e  means t h a t  aRa is  a 

t r u e  s t a t ement .  I f  w e  l e t  R denote  "is: the b r o t h e r  o f , "  then aRa need n o t  

be t r u e  s i n c e  a person i s  n o t  h i s  own b r o t h e r ,  o r  i f  w e  l e t  R denote "is 

less than" then f o r  any number b,  bRb is  f a l s e ,  s i n c e  no number is less 

than  i t s e l f .  

I n  a  s i m i l a r  way, n o t  every  r e l a t i o n  is  symmetric. Again i f  R denotes  

t h e  r e l a t i o n  "is t h e  b r o t h e r  o f t n  i f  aRb i s  t r u e  it need n o t  fol low t h a t  

bRa i s  t r u e .  For e x a m p l e , , i f  it i s  > t r u e  t h a t  John is  t h e  b r o t h e r  o f  

Mary, t h i s  does n o t  imply ( w e  hope) t h a t  Mary i s  t h e  b r o t h e r  of  Johnl I f  

R denotes  "is less t h a n , "  n o t i c e  t h a t  a s  soon a s  aRb i s  t r u e ,  bRa i s  
f a l s e  ( s i n c e  i f  t h e  f i r s t  is  less than  t h e  second, t h e  second is greater 

than  t h e  f i r s t )  . 
F i n a l l y ,  n o t  every  r e l a t i o n  i s  t r a n s i t i v e .  For example, i f  R denotes "is 

t h e  f a t h e r  o f n  then i f  both  aRb and bRc a r e  t r u e ,  aRc m u s t  be f a l s e .  

Namely, i f  a is t h e  f a t h e r  of b  and b is  t h e  f a t h e r  of c, then a  is  t h e  

g randfa the r  of  c,= t h e  f a t h e r  of  c. 

It should be observed t h a t ,  f o r  a given r e l a t i o n ,  t h e  p r o p e r t i e s  of be ing  

r e f l e x i v e ,  symmetric, and t r a n s i t i v e  a r e  i n d e ~ e n d e n t .  

*Some texts refer to "properties" rather than "rules." Our interpretation 

will b e  that in the context of a game, we shall use the term "rules." If 

we then find the "real-life" model which obeys our rules of the game, 

then in referring to the model w e  will call our rules properties of the 

model. 
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That is ,  a given r e l a t i o n  might have none, any one, any two, o r  a l l  

t h r ee  of t he  proper t ies .  For example, " i s  less thann is ne i the r  re f lex-  

i v e  nor symmetric bu t  it is t r a n s i t i v e  ( i . e . ,  i f  t h e  f i r s t  is l e s s  than 

t h e  second and t h e  second is  less than the  t h i r d ,  then the  f i r s t  i s  

l e s s  than t h e  t h i r d ) .  

Any r e l a t i o n  t h a t  i s  r e f l ex ive ,  t r a n s i t i v e ,  and symmetric -is ca l l ed  

an equivalence r e l a t i o n .  Thus, equa l i t y  is  an equivalence r e l a t i on .  

Other examples of equivalence r e l a t i o n s  a r e  "is t h e  same he igh t  a s n  
and, i n  geometry, "is congruent to." In  terms of the  s t r u c t u r e  of 

our game, then,  i f  w e  use "=" t o  denote any equivalence r e l a t i o n ,  then 

E-1, E-2, and E-3 a r e  p roper t ies  f o r  t h a t  model. 

The key po in t  of i n t e r e s t  about equivalence r e l a t i o n s  i s  t h a t  t h e  

usual  r u l e  of s u b s t i t u t i o n  a s  learned i n  high school algebra appl ies .  
Namely, i n  its most a b s t r a c t  form, i f  R i s  an equivalence r e l a t i o n  

and aRb i s  t r u e  then we may rep lace  a  by b  and v i ce  versa  with r e spec t  

t o  R. For example, i f  R denotes " i s  t he  same height  as"  and i f  aRb 

i s  t r u e  then a  and b a r e  equivalent (may be subs t i t u t ed  f o r  one another)  

a s  f a r  a s  he igh t  i s  concerned. Of course a  and b might not  be equi- 

va len t  with r e spec t  t o  o ther  r e l a t i o n s ,  such a s  "has t h e  same color  

ha i r . "  For example, a and b  could have t h e  same height  bu t  d i f f e r e n t  

color  h a i r .  

A t  any r a t e ,  s i n c e  equa l i t y  is an equivalence r e l a t i o n ,  w e  add t o  our 

l ist of r u l e s  

E-4: 	 I f  a = b, then w e  may interchange a  and b a t  w i l l  i n  any 
r e l a t i o n  invol-yipg equali ty*.  (The Subs t i tu t ion  Rule) 

, 7-

Fina l ly ,  t o  exclude any "middle grcx,zdW ( in  f a c t ,  i n  l og i c  w e  r e f e r  t o  

t h i s  a s  t h e  r u l e  of t h e  excluded middle),  we introduce 

E-5: 	 Exactly one of t h e  following statements must be t r u e  (1) a = b,  
(2 )  I t  i s  f a l s e  t h a t  a = b. I f  (2) is  t r u e  then w e  w r i t e  a # b. 
(The Rule of Dici.iotomy) 

7 . 

A l l  w e  ask now i s  t h a t  each player  agree t o  accept these  f i v e  r u l e s  

governing equa l i ty .  Aside from t h i s ,  we ask him t o  accept no f u r t h e r  

assumptions, nor do w e  ask him why he accepts  our ru l e s .  On the  o the r  

*For example,  when we s a y  3 + 2 = 5 ,  we c e r t a i n l y  do n o t  mean t h a t  t h e  
symbols 3 + 2 = 5 l o o k  a l i k e .  Rather ,  what we mean i s  t h a t  any problem 
t o  which t h e  number r e p r e s e n t e d  by t h e  symbol 3 + 2 i s  t h e  c o r r e c t  
answer,  a l s o  has  t h e  number r e p r e s e n t e d  by 5 a s  t h e  r i g h t  answer.  



hand, during t h e  playing of our  game, we must never invoke any 

proper t ies  of equa l i t y  o the r  than those s t a t e d  i n  our r u l e s  unless 

they can be shown t o  follow inescapably from these  ru l e s .  

Let us now proceed t o  impose a few.,rules of t he  game on addi t ion.  

F i r s t  of a l l ,  we know t h a t  t h e  sum of two numbers is  a number, so  per- 

haps a good r u l e  t o  invoke i s  

A-1: 	 I f  and b a r e  numbers s o  a l s o  is  a + b (The Rule of Closure) 

A-2: 	 I f  a and b a r e  numbers a + b = b + a. (The Cummutative Rule f o r  
Addition) 

A-3: 	 I f  a ,  b,  and c a r e  numbers then a. + (b + c )  = (a  + b)  + c. (The 
Associative Rule f o r  Addition) 

Again, before  going f u r t h e r  with our r u l e s ,  l e t ' s  make su re  t h a t  we 

understand t h e  impact of t he  f i r s t  t h r ee  ru l e s .  To begin with,  i n  

mathematical s t r u c t u r e  we of ten  assume t h a t  when we combine " l i ke"  

things  w e  g e t  " l i ke"  things .  The po in t  is  t h a t  t h i s  i s  no t  always 

t rue .  For example, i f  w e  a r e  deal ing with t he  set of odd numbers, w e  

must observe t h a t  t he  sum of two such numbers i s  no t  a member of t h e  

s e t .  Namely, t h e  sum of any p a i r  of odd numbers is  always an even 

number. In  o the r  words, t h e  r u l e  of c losure  s t a t e s t h a t  whenelements 

of a s e t  a r e  "combined" by t h e  given operat ion,  t h e  r e su l t i ng  element 

is again a member of t h e  same s e t .  Notice t h a t  c losure  depends both 

on t h e  set and t h e  operation.  For example, t h e  set odd numbers i s  

no t  closed with r e spec t  t o  addi t ion  bu t  it is cl,osed with respect  t o  

mu l t i p l i ca t i on ,  s i nce  t he  product of two odd numbers is always an odd 

number. 

In  any event,  i f  w e  have a r u l e  which t e l . 1 ~  us how t o  combine two 

elements of S s o  a s  always t o  ob ta in  an element of S, w e  c a l l  such 

a r u l e  a binary operat ion on S. Thus, addi t ion is  a binary operation 

on the s e t  of r e a l  numbers.* I n  s t i l l  o ther  words, t he  Rule of 

Closure is  assoc ia ted  with  t h e  concept of a binary operation.** 

A s  f o r  A-2, n o t i c e  how t h i s  d i f f e r s  from E-2. In  p a r t i c u l a r ,  from 

A-1, both a + b and b + a a r e  numbers. A l l  A-2 s t a t e s i s  t h a t  these  
two numbers a r e  equal. 

* N o t i c e  how t h i s  d i f f e r s  from a r e l a t i o n  which compares twoVelements  
r a t h e r  than combines them t o  form another  e l ement .  

**That i s ,  mere ly  combining e l e m e n t s  o f  S t o  form an element i s n ' t  
c a l l e d  a b inary  o p e r a t i o n  u n l e s s  t h a t  e lement  a l s o  always be longs  t o  S .  



From another po in t  of view, a l l  E-2 s t a t e s i s  t h a t  i f  - a + b = b + a then 

b + a = a + b. I t  does no t  s t a t e  t h a t  a + b and b + a must be  equal. 

Indeed, commutivity is not  a property shared by every binary operation.  

Quite i n  general ,  order  does make a dif ference.  Thus, while it is 

t r u e  t h a t  a + b = b + a f o r  a l l  numbers a and b, it is  no t  t r ue ,  f o r  

example, t h a t  a - b = b - a. 

As f o r  A-3, i n  more "p la in  English," t h i s  merely says  t h a t  t h e  ~ i n a r y  

operat ion ca l l ed  addi t ion  does no t  depend on voice  i n f l ec r ion ,  s o  t o  - - .  

speak. For example, an expression such a s  2 x 3 + 4 is ambiguous a s  

it stands.  On t h e  one hand, it can be read a s  (2 x 3) + 4 which is 

10; and on t h e  o the r  hand, it can be read a s  2 x (3  + 4 )  which is 1 4 .  

In  a s imi l a r  way, 9 - 3 - 1 can be thought of a s  equa l l ing  e i t h e r  5 

o r  7 depending on whether w e  "pronounce" it " (9  - 3) - 1" o r  

"9 - (3 - I ) . "  What a s s o c i a t i v i t y  implies i s  t h a t  w e  do no t  need t o  

use parentheses,braces,  brackets ,  e t c .  t o  d i s t i ngu i sh  between various 

voice i n f l ec t i ons .  That is, a + b + c y i e l d s  t h e  same answer whether 

we read it a s  (a  + b) + c o r  a s  a + (b + c ) .  

So f a r ,  our r u l e s  do no t  mention a s i n g l e  number by name. W e  now 

s i n g l e  o u t  a r a t h e r  s p e c i a l  number from t h e  po in t  of view of 'addition. 

Namely, 

A-4: 	 There e x i s t s  a number denotedby 0 such t h a t  a + 0 = a f o r  a l l  
numbers, a. (The Rule of Additive Iden t i t y )  

Zero is c a l l e d  t h e  add i t i ve  i d e n t i t y  s ince ,  with respec t  t o  addi t ion ,  

t h e  addi t ion  of 0 does not  change t h e  " iden t i t y "  of a number. In  a 

s imi l a r  way, 1would be ca l l ed  t h e  mu l t i p l i ca t i ve  i d e n t i t y  s ince  mul- 

t i p l y i n g  by l does no t  cnange the value. We s h a l l  say more about t h i s  

a b i t  l a t e r .  

Our f i n a l  r u l e  f o r  add i t ion  is t h e  one which makes t h e  concept of sub- 

t r a c t i o n  ava i l ab l e  t o  us. Namely, 

A-5: 	 For each number a ,  t he re  e x i s t s  a number b such t h a t  a + b = 0. 
W e  usual ly  denotg b by -a. That is, a + (-a) = 0. (The Rule 
of Additive Inverse)  

In  o ther  words, A-5 tel ls  us t h a t  we can "undo" addit ion.  A-5 allows 

us t o  t a l k  about sub t rac t ion  now i n  t h e  following way. Given two num- 

bers  a and b, by A-5, a number (-b) e x i s t s .  W e  then agree t o  abbrevi- 

a t e  a + (-b) (which w e  know i s  a number by A-1) by a - b. 

Before continuing,  it is c r u c i a l  t h a t  we understand t h a t ,  while t h e  



t en  r u l e s  l i s t e d  thus  f a r  were motivated by our thinking of t he  r e a l  

numbers a s  a model, once t h e  r u l e s  a r e  l i s t e d ,  we need no longer th ink 

of t h e  model which motivated t h e  ru les .  In  o the r  words, once t he  

r u l e s  a r e  accepted, w e  merely study t h e  inescapable consequences of 

these  ru l e s .  For example, l e t  us show t h a t  t h e  "cancel la t ion law" 

( i . e . ,  i f  a + b = a + c then b = C )  follows inescapably from our ru les .  

F i r s t  of a l l ,  A-5 te l ls  us t he  ex is tence  of t h e  number ( -a) .  Then 

s ince  we a r e  given t h a t  a + b i s  equal t o  a + c we may replace ( a  + b) 

by ( a  + c ) ,  which by A-1 a r e  numbers, t o  ob ta in  

-a + ( a  + b) = -a + ' (a + c) .  

Equation (1) is obtained from E-4. 

By A-3 w e  know t h a t  -a + ( a  + b) = (-a + a )  + b while -a + (a  + c) = 

(-a + a )  + c. Again, by E-4, w e  s u b s t i t u t e  these  e q u a l i t i e s  i n t o  (1) 

and ob ta in  

From A-5 w e  know t h a t  a + (-a) = 0 ,  and from A-2 we know t h a t  

a + (-a) = (-a) + a. Hence, by E-4 w e  may conclude t h a t  -a + a is 

a l s o  equal t o  0. Subs t i t u t i ng  t h i s  r e s u l t  i n t o  ( 2 ) ,  y i e ld s  

Since 0 + b = b + 0 (by A-2) and b + 0 = b (by A - 4 ) ,  w e  have by sub- 

s t i t u t i o n  (E-4) t h a t  0 + b = b. Similar ly ,  0 + c = c.  Using E-4 

now, equation (3) becomes 

and equation ( 4 )  is the  des i red  r e s u l t .  

L e t  us po in t  o u t  t h a t ,  t o  t he  un in i t i a t ed ,  t he  above proof might seem 

d i f f i c u l t ,  obscure, o r  unnecessary. A few c l a r i f y i n g  remarks might 

be i n  order .  F i r s t  of a l l ,  a s  i n  most complex games, t he  s t r a t egy  

required t o  play t h e  game of mathematics i s  complicated and w i l l  be 

mastered t o  d i f f e r e n t  degrees by d i f f e r e n t  players .  For our immediate 

purposes, it i s  s u f f i c i e n t  t h a t  t he  "player" apprecia te  the  f a c t  t h a t  

t h e  s t r a t e g y  used i n  our proof d id  show t h a t  t he  conclusion followed 

inescapably from t h e  t en  r u l e s  even i f  the  player  might not  have been 

ab l e  t o  invent  t h e  s t r a t e g y  himself. (This i s  no t  too surpr i s ing .  



? 

After  a l l ,  th ink  of t h e  o the r  games wherein it i s  no t  uncommon f o r  a 

player  t o  be ab l e  t o  apprec ia te  and comprehend t h e  s t r a t egy  of t he  

master even though t h e  player  might no t  have been ab l e  t o  invent  t h e  

s t r a t egy  himself. I n  many cases ,  t h i s  d i f fe rence  is t h e  d i f fe rence  

between being "another player" and being a "pro.") 

While t he re  may be " i n t u i t i v e "  ways of v i sua l i z ing  t he  same r e s u l t  

a s  w e  obtained,  i f  t h e  technique u i t i l i z e s  p roper t ies  of numbers 

o ther  than those spec i f i ed  i n  our t en  r u l e s ,  then t he  r e s u l t  need no t  

be t r u e  i n  models which obey only t h e  t en  ru l e s .  In  o the r  words, our 

approach guarantees t h a t  our conclusion i s  t r u e  i n  any model t h a t  has 

p roper t ies  t he  t en  r u l e s  spec i f ied  i n  our game. 

W e  would a l s o  l i k e  t o  po in t  ou t  t h a t  while our demonstration might 

no t  have made it t h a t  c l e a r ,  our proof was modeled prec i se ly  a f t e r  

t he  statement-reason format of plane geometry. Had w e  wished t o  be 

more formal we could have wr i t t en  

Statement Reason 
I 

(1) There e x i s t s  a number -a 

(2) E-4 ( replacing a + b by a + c )  

( 4 )  Subs t i t u t i ng  (E-4) (3) i n t o  (2) 

(5) A-2 

(6) A-5 

(7) Subs t i t u t i ng  (E-4) (5) i n t o  (6 )  

( 8 )  Subs t i t u t i ng  (E-4) ( 7 )  i n t o  ( 4 )  

(9) A-2 

(10) A-4 

(11) Subs t i t u t i ng  (E-4) (9)  i n t o  (10) 

(12) Subs t i t u t i ng  (11)i n t o  (8) 

q.e.d. 

Usually, w e  a r e  much less formal and wr i te :  



The impor tant  p o i n t  i s  t h a t ,  one way o r  ano the r ,  w e  must show t h a t  our  

conclus ions  fo l low inescapably  from o u r  assumptions. Other examples 

a r e  l e f t  t o  t h e  e x e r c i s e s .  
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