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DERIVATIVES I N  N-DIMENSIONAL VECTOR SPACES 

A 

Introduct ion 
,, . - -' 

* -..: 
The approach of our textbook (as  d&ioped i n  t h e  previous two u n i t s )  

i n  emphasizing t he  geometrical  aspects  of p a r t i a l  der iva t ives ,  

d i r e c t i o n a l  de r iva t i ve s ,  and the  grad ien t  is, i n  many ways, an 

exce l l en t  approach. W e  g e t  a p i c tu re  of what appears t o  be happening, 

and, e spec i a l l y  f o r  t he  beginning s tudent ,  t h i s  i s  much more 

meaningful than a more p rec i s e  and general  d iscussion t h a t  would 

apply t o  a l l  vec tor  spaces, regard less  of dimension. In  f a c t ,  i f  we 

want t o  use the  l a t t e r  approach, it is  w i s e  t o  use the  former f i r s t .  

This is  i n  accord with many such decis ions  which have already been 

made .in our previous treatment of mathematics. A s  an example, wi thin  

t he  framework of our p resen t  course, no t ice  how ca re fu l ly  we ex- 

p l o i t e d  t he  geometric aspects  of vec tors  a s  arrows before we even 

mentjoned n-dimensional vec tor  spaces. And, i n  t h i s  respec t ,  r e c a l l  

how sophis t ica ted  many of our  "arrow" r e s u l t s  were i n  t h e i r  own r i g h t .  

That is,. granted t h a t  arrows were simpler than n-tuples, when a l l  we 

had w e r e  arrows, t he re  w e r e  s t i l l  some r a t h e r  d i f f i c u l t  ideas  f o r  us 

t o  ass imi la te .  

In  any event,  our aim i n  t h i s  chapter  is t o  continue within the  

s p i r i t  of the  game of mathematics which, thus f a r ,  has served us s o  

w e l l .  Namely, we have introduced n-dimensional vector  spaces s o  t h a t  

w e  could u t i l i z e  t he  s i m i l a r i t y  i n  form between t h e  previously 

s tud ied  funct ions  of the  form f ( x )  and our new funct ions  of the  form 

f ( x ) .  For example, when it came time t o  def ine  cont inu i ty  and l i m i t s  

f o r  funct ions  of s eve ra l  r e a l  va r i ab l e s ,  w e  rewrote f ( x l ,  ...,xn) a s  

f (5) and then mimicked the  f (x) s i t u a t i o n  by copying de f in i t i ons  
verbatim, sub j ec t  only t o  making the appropria te  "vector izat ions ."  

Rather than review this procedure, l e t  us i n s t ead  move t o  the  next 

pla teau.  Using the  approach developed i n  Chapter 4 of these 

supplementary notes ,  once w e  had defined what l i m i t s  and cont inu i ty  

meant f o r  any funct ion,  f :E"+E, our next  l o g i c a l  s t e p  would have been 

t o  mimic our  d e f i n i t i o n  of f '  ( a )  , and thus "induce" a meaning of f ' (5) 
where a e ~ n .  



I . ' 

. . , 

Our aim i n  t h i s  chapter  is  t o  see  where such an attempt would have 

l ed  us and, once t h i s  i s  done, t o  see  how our "new" concept of 

d i f f e r e n t i a t i o n  i s  r e l a t e d  t o  the more t r a d i t i o n a l  concept of 

d i f f e r e n t i a t i o n  a s  it was presented i n  the  previous two un i t s .  

B 

A New Type of Quot ien t  

From the  d e f i n i t i o n  

1"a+~x)- f  (a)  1£1 1.1 = AX 

it seems n a t u r a l  t h a t  i f  now f:En+E and -afzEn, we should def ine  f '  ( a )  -

where (2) i s  obtained from (1)by the  appropria te  "vector izat ions .  " 

In  a r r i v ing  a t  (21, t he  most s u b t l e  po in t  i s  t o  observe t h a t  we must 

replace Ax by Ax, - s ince ,  among o ther  th ings ,  -a+Ax has no meaning 

(i.e., we have no r u l e  f o r  adding a vec tor  [a]- t o  a r e a l  number 

[AX]). Once Ax is rep lace  by Ax, - it is  c l e a r  t h a t  0 must be replaced 

by 0.-
If w e  next  look a t  t h e  bracketed expression i n  ( 2 ) ,  w e  g e t  a r a t h e r  

e legant  i n s i g h t  a s  t o  how new mathematical concepts a r e  o f ten  born. 

For, while a t  f i r s t  glance,  t he  der iva t ion  of (2) from (1)may s e e m  
harmless, a second glance shows us t h a t  w e  have "invented" an 

operat ion which we have never encountered before i n  our study of 

vec tors  ( e i t h e r  a s  arrows o r  a s  n- tuples) .  More s p e c i f i c a l l y ,  i n  

the  bracketed expression,  our numerator i s  a r e a l  number (i.e., 

while -a i s  a vector  [n-tuple] , r e c a l l  t h a t  our notat ion f (5) i nd i ca t e s  

t h a t  our "output" i s  a number), and our denominator is  a vector! 
* 

Thus, whether w e  l i k e  it o r  no t ,  i f  w e  decide t o  accept (2) a s  a 

s t a r t i n g  po in t ,  w e  a r e  obliged t o  i nves t i ga t e  the  meaning of -
C 



where c denotes an a r b i t r a r y  bu t  f ixed r e a l  number and v an a r b i t r a r y-
but  f ixed  vector.  Notice, of course, t h a t  we could e l e c t  t o  abandon 

( 2 ) ,  bu t ,  i n  the  usual s p i r i t  of th ings ,  it hardly seems wise t o  

abandon an approach t h a t  has been f r u i t f u l  simply because one 

p o t e n t i a l  problem a r r i s e s .  Rather, it seems wiser f o r  us t o  t r y ,  

a t  l e a s t ,  t o  f i nd  a p r a c t i c a l  d e f i n i t i o n  of what it means t o  divide 

a number by a vector .  

Once we have agreed on t h i s  course of ac t i on ,  we again f a l l  back 

on our  previous experience and r e c a l l  how we defined d iv i s ion  i n  the  

case of two numbers. We defined t o  be t h a t  number which when 

mul t ip l ied  by b yie lded a. In terms of a more computational form, 
a was def ined by 

* .  
l . 9 

b "times" ;= a 

With t h i s  i n  mind, it seems t h a t  a very na tu ra l  way t o  mimic ( 3 )  i s  

t o  def ine  -C by
-v 

, . .  
. ,*

;:i " 1  . " .  

-v " t ipes t '  
-
-v 
C = c . \  4 .., ... ' *  s ( 4 )  

This immediately suggests t h a t  unless  we want t o  invent new forms of 

mul t ip l ica t ion ,  (and nothing precludes t h i s  p o s s i b i l i t y ,  except t h a t  

we al ready have enough problems1 the  "times" i n  ( 4 )  must denote the  

d o t  product, f o r  according t o  ( 4 )  we must multiply a vector  (v) by -
"something" t o  ob ta in  a number, and of the  types of mul t ip l ica t ion  w e  

have discussed,  only t h e  d o t  product allows us t o  multiply a vector  

by "something" ( i n  f a c t ,  by another vector)  t o  ob ta in  a number. 

Thus, t he  "times" i n  ( 4 )  must denote a d o t  product. And, it there fore  
appears t h a t  -v 

C must, i t s e l f ,  be a vector ,  s ince ,  a s  we have j u s t  

s a id ,  t he  dot-product combines two vectors  t o  produce a number. 

There is, however, a l i t t l e  complication t h a t  presents  i t s e l f  here. 

The problem ac tua l ly  ex i s t ed  when we ta lked about the  quot ien t  of 

two numbers, but ,  except i n  the  r a the r  spec i a l  case i n  which t he  

denominator was zero, t he  problem never occurred. The po in t  we a r e  

d r iv ing  a t  i s  t h a t  when we say ";i s  +he number which when mult ipl ied 

by b y i e l d s  a , "  what gives  us the  r i g h t  t o  say "the?" - Why c a n ' t  

t he re  be more than one such number, o r  f o r  t h a t  mat ter ,  why not  no 

such number? 



The language of s e t s  provides us with a n i c e  explanation.  Suppose.: . 

we def ine  2 t o  be t he  -set of a l l  numbers, c ,  such t h a t  hxc = a. That 

is ,  
b 

-.. - , c 
-

~. 
-

Then, unless  b = 0'. t h e  -set a cons i s t s  of the s i n g l e  'number a* 

(e.g., 
6 = {c:3c=6) = {6;3) = (211, and hence there  i s  no harm i n  

confusing t h e  set with the  number E, where i n  t he  l a t t e r  context,  

i s  used a s  t h e  f r a c t i o n  which denotes a*. 

Mimicking (5) we may a l s o  def ine  2 t o  be a set; namely
V 


The problem is  t h a t ,  un less  1= g and c # 0 ( i n  which case  2C = $), t h e-
set has i n f i n i t e l y  many elements!-v 

Before we document t h i s  l a s t  remark, l e t  us  make sure  t h a t  it i s  

c l e a r  t o  you t h a t  t he  set described i n  (6) i s  a well-defined s e t  

regard less  of t he  dimension of the  vector  space. I n  o the r  words, 

r e c a l l  t h a t  i n  t he  l a s t  chapter of these  supplementary notes ,  we 

general ized the  d e f i n i t i o n  of a d o t  product s o  t h a t  it ex is ted  i n  

any dimensional space. By way of a b r i e f  review, i f  x = (xl, ...,xn 
and y = (yl ,...,yn) then -x - y  = xlyl+ ...+ x y n n' 

Thus, by way of an example, suppose c = 5 and -v = ( 1 , 2 , 3 , 4 ) ~ E4 . 
Then by (61, 

* 
I f  b -0 ,  we have  s e e n  t h a t  i f  a#O then  :=I s i n c e  no number t i m e s  

0  can y i e l d  a non-zero  number, and i f  b=O and a=O, we have  s e e n  t h a t  

a 0
,) ( i . e . ,  i s  t h e  set  o f  numbers, s i n c e  any number t i m e s  z e r o  

i s  z e r o .  



Notice t h a t  while it may be d i f f i c u l t  t o  th ink of p i c t o r i a l l y ,
(1,2,3,4 ) 

( 7 )  shows us t h a t  it is  a "very r e a l "  set, a t  l e a s t  i n  the  sense t h a t  

it is  the  so lu t i on  s e t  of the  "very r e a l *  l i n e a r  equation i n  four  

unknowns 

In  f a c t ,  it might seem more n a t u r a l  t o  you i f  we r e s t a t ed  t h i s  l a s t  

remark i n  s o r t  of a 'reverse" way. Suppose i n  a t r a d i t i o n a l  math 

course w e  w e r e  asked t o  f i n d  a l l  so lu t ions  of the  equation given by 

( 8 ) .  Among o the r  th ings ,  we may pick values f o r  x2,  x3, and x4 
completely a t  random, and once these  random choices a r e  made, xl 

can then be uniquely determined from (8) simply by l e t t i n g  

x 1 = 5 - 2x2 - 3x3 - 4x4. I n  modern language, t h i s  means t h a t  the  

so lu t i on  s e t  of (8) has i n f i n i t e l y  many elements, and, by (7), 
another name f o r  t h i s  i n f i n i t e  so lu t ion  set i s  5 

(1,2,3,4) 

In  s t i l l  o the r  words, while w e  may no t  be used t o  thinking of the  

so lu t i ons  of an equation l i k e  (8) a s  being po in t s  i n  a 4-dimensional 

vector  space, t he  f a c t  is t h a t ,  conceptually, the  idea i s  sound. W e  

admit, however, t h a t  i n  t he  s p i r i t  of the  t e x t ,  there  i s  probably 

more s a t i s f a c t i o n  i f  w e  th ink  of t he  spec i a l  cases  i n  which we may 

view our vec tors  (n-tuples) a s  arrows and see  what the  geometric * 

impl icat ions  are .  For t he  sake of a b i t  of s impl ic i ty  (and we s h a l l  

show i n  a moment t h a t  t h i s  r e s t r i c t i o n  i n  no way loses  any g e n e r a l i t y ) ,  

let us  assume t h a t  i n  (6), denotes a u n i t  vector  (because i f  -v 

is a u n i t  vector ,  x * ~is simply t he  pro jec t ion  of -x i n  the  d i rec t ion  

of v- while i f  v i s  no t  a u n i t  vector ,  w e  must merely come t o  g r ip s  

with the  more computational f a c t  t h a t  -x0v- i s  a s c a l a r  mul t iple  of ', S-

t he  pro jec t ion  of 5 i n  the  d i r ec t i on  of x). 
So, under t he  assumption t h a t  -v is a u n i t  vector  and t h a t  our vectors  
a r e  now arrows ( i n  t he  diagrams which follow, we view our vectors  

a s  planar  arrows) ,  we may view 

a s  t he  set of a l l  vec tors  whose pro jec t ion  i n  the  d i r ec t i on  of v is c .  

Clear ly ,  t he re  a r e  i n f i n i t e l y  many such vectors  and t h i s  i s  amplified 

i n  Figure 1. 



2. Thus pkl, E?R~ e t c .  a l l  have 
-k

the property t h a t  v*PRn = C ,-
when Rn i s  any po in t  on L. 

3. Therefore, according t o  (61, 

any vector  of t he  form % i s  

an acceptable value of 

1. L e t  IP%I = c. Then i f  R is 

any po in t  on t h e  l i n e  L through
+ 

Q perpendicular t o  v, PR*v- = c, 

s ince  -v is a u n i t  vector .  

(Figure I) 

To see Figure 1ih terms of a more s p e c i f i c  example, consider the  
set defined by 

~. 

2 + + *- = {v: v - 1  = 23* 
1 


-+ * is the  pro jec t ion  of t i n  t h e  d i r e c t i o n  of the  x-axis. But v * ~  Thus, 

+ - * - tFor any such v, v - 1  = 2; hence, 
any such f q u a l i f i e s  a s  a 

member of 2 . 
1 


(Figure 2)  



- - 

Our r e s u l t s  a r e  no t  s e r ious ly  a f fec ted  i f  v is no t  a u n i t  vector.  The 

V 	 * 
key lies i n  the  f a c t  t h a t  i f  -v # -0 ,  - is  a u n i t  vector  i n  the  

lkll 
d i r e c t i o n  of v. In  this event we have: 

:. \.(' 

ThusI from (9)  w e  see t h a t  i n  general ,  f o r  v - # -0,  i s ' the s e t  o.k9'all 
V 


vec tors  whose pro jec t ion  i n  the  d i r ec t i on  of v i s  	-C , and 2n the  
leu 

s p e c i a l  case t h a t  i s  a u n i t  vector ,  Ikibl, and -C i s  simply c. 
lkll 

C CIn  the  event  1= 0, Ikll= O  and accordingly -= -, which i s  the0 
llvll 

"forbidden" quot ien t  of two numbers. A s  a small  as ide ,  observe t h a t  

if -v = g, 5 
-

behaves a s  i t s  numeral counterpart .  Namely, 

Cb =  15: zag= c}. But -x-0- = 0 [i .e. ,  (Xl , . . . ~ n ) * ( O  	 ,...,0)  = xlO+ ...+xnO 
-

C 	 C = O+...+O = 01; hence, i f  c # 0, 8 = I, while i f  c = 0, 5 i s , t h e 7 - - -  

e n t i r e  vector  space. 

Now, w e  f e e l  t h a t  our  der iva t ion  of 2 which culminated i n  ( 9 )  is
V 


.:% +it, - have made necessary very s a t i s f y i n g ,  e spec i a l l y  a-a- s ince--- -, .shows t h a t  w e  
$ . - < ' .  - A -

b'j 	 * .headway f o r  def in ing  

* 
Again ,  w h i l e  o u r  p r e s e n t  i l l u s t r a t i o n  i s  i n  terms o f  a r r o w s ,  n o t i c e  

t h a t  Ikl]h a s  b e e n  d e f i n e d  f o r  a l l  v e c t o r  s p a c e s .  I n  k e e p i n g  w i t h  
t h e  s p i r i t  o f  t h e  m e t r i c  u s e d  i n  t h e  "ar row" c a s e s ,  we do  a g r e e  t o  -
u s e  t h e  E u c l i d e a n  m e t r i c  r a t h e r  t h a n  t h e  Minkowski  m e t r i c  when w e  

-v 
t a l k  a b o u t  -. M o r e o v e r ,  a s  we s a w  i n  U n i t  1 of 	 t h i s  B l o c k ,  i fre11 
we wan t  t o  u s e  t h e  g e n e r a l  r e s u l t  t h a t  x*y<Ibll lbll we mus t  u e e  t h e  
E u c l i d e a n  m e t r i c  s i n c e  t h e  r e s u l t  i s  n o t  t r u e  f o r  t h e  Minkowski  m e t r i c .  



- - - 
l i m  f  (atAx) - - -f (5) 
Ax+O Ax 

Y e t  t he r e  i s  something about ( 9 )  which tends t o  make the  mathematician 

cautious.  Spec i f i ca l l y ,  we  would most l i k e l y  want t o  be able  t o  

th ink of C a s  a  s i n g l e  vector  r a t h e r  than a s  an i n f i n i t e  set of 

vec tors  (zn much the  same way t h a t  w e  need no t  d i s t i ngu i sh  between 
athe number 2 and the  set when b # 0 ,  except t h a t  then the  choice 

was easy s ince  t he  set a has only a  s i n g l e  element).  

But how s h a l l  we go about the  process of s e l ec t i ng  a  s ing l e ,  w e l l -

defined member of t h e  set described by ( 9 ) ?  Well, t he  one thing t h a t  

each-member of the set shares  i n  common is t h a t  its pro jec t ion  i n  the 

d i r ec t i on  of 	1 is  -C * . I f  this is  the  only property t h a t  is  of 
Itll 

i n t e r e s t  t o  us,  why no t  choose t h a t  m e m b e r  o f  - which already has the  

d i r ec t i on  of v? - ** 
Af te r  a l l ,  i n  t he  expression 5,- is the only 

vec tor  which is s p e c i f i c a l l y  named. 

* 
W h i l e ,  a d m i t t e d l y ,  i t  i s  e a s i e r  t o  t h i n k  i n  terms o f  a r r o w s  t h a n  t o  

t h i n k  a b s t r a c t l y ,  k e e p  i n  mind f rom o u r  d i s c u s s i p n  i n  C h a p t e r  4  o f  
t h e s e  n o t e s  t h a t  " d i r e c t i o n "  i s  d e f i n e d  f o r  all s p a c e s .  Namely, 
"x h a s  t h e  same d i r e c t i o n  a s  v" s i m p l y  means  t h a t  5 i s  a s c a l a r  
m u l t i p l e  o f  1, o r ,  i n  n - t u p l e  n o t a t i o n ,  g i v e n  y = (v1, ...,v ), t h e n  

n 
t h e  s e t  o f  a l l  v e c t o r s  wh ich  h a v e  t h e  same d i r e c t i o n  a s  1 i s  d e f i n e d  
t o  b e  { t l : t  a r e a l  number},  i . e . ,  { ( t v l ,  ...,t v  ) : t  any  r e a l  number}. 
** 	 n 

W h i l e  f h a s  i n f i n i t e l y  many members ( i f  1 + 2) t h e  membership  i s  

s t i l l  r a t h e r  s e l e c t i v e .  Namely, i f  w e  i n s i s t  on a p a r t i c u l a r  d i r e c t i o n  

and s e n s e  t h e r e  i s  o n e  and  o n l y  o n e  ~fE ;C s u c h  t h a t  x.1 = c .  P i c t o r i a l l y ,  

t h i s  i s  e a s y  t o  see,  f o r  a l t h o u g h  i n f i n i t e l y  many v e c t o r s  h a v e  t h e  
same p r o j e c t i o n  i n  a  g i v e n  d i r e c t i o n ,  no  two v e c t o r s  whose d i r e c t i o n s  
( and  s e n s e )  a r e  e q u a l  b u t  whose m a g n i t u d e s  a r e  u n e q u a l  c a n  h a v e  t h e  
same p r o j e c t i o n .  More a n a l y t i c a l l y ,  i n  t e r m s  o f  a s p e c i f i c  example  

i s  a n  i n f i n i t e  s e t .  I f  we now s e l e c t  a l l  members o f  t h e  s e t  which  
h a v e  t h e  same d i r e c t i o n  a s  ( 3 , 1 , 2 , 3 , 4 )  we mean t B a t  o u r  members h a v e  
t h e  form ( 3 t ,  t , 2 t , 3 t , 4 t ) ,  and  h e n c e  

7 8
T h e r e f o r e ,  ( 6 , 2 , 4 , 6 , 8 )  i s  t h e  o n l y  member of 

( 3 , 1 , 2 , 3 , 4 )  
wh ich  h a s  

t h e  same d i r e c t i o n  ( and  s e n s e )  a s  ( 3 , 1 , 2 , 3 , 4 ) .  



-
Since - i s  the  u n i t  vec tor  i n  the  d i r ec t i on  of v, we have t h a t  

l t l l  -
-

C;t h e  vec tor  - would be w r i t t e n  a s- v 

CWith t h i s  a s  motivation, w e  nuw def ine - by
V 

Cand our  previous d i scuss ion  insures  t h a t  by ( 1 1 1 ,  vWv= c. . 
-

AS a computational review,' we may compute using the  f a c t  t h a t-
M12=c. .v-l! = 1 1 , s o  that v-

The Di rec t iona l  Derivative i n  n-Dimensions 

L e s t  w e  l o s e  s i g h t  of the  f o r e s t  because of the  t r e e s ,  l e t  us summarize 

the  main computational po in t s  of the  p r e v i k s  sect ion.  In  an attempt 

t o  def ine  f '  (a)- by mimicking the  d e f i n i t i o n  of f '  ( a )  w e  a r e  forced t o  

* 
Here w e  see a s t r o n g  r e a s o n  why we a re  u s i n g  t h e  E u c l i d e a n  m e t r i c .  

2
Namely, i f  l = ( v l , .  .., v n )  t h e n  1-1- v12+. ..+vn . Now (el]= 

jVl2+.  ..+vn2 o n l y  i f  r e  are using the  E u c l i d e a n  metric. Hence for 

t h e  E u c l i d e a n  m e t r i c  i(*1- lk1l2. ( F o r  t h e  Minkowski  m e t r i c ,  y-1 

would  s t i l l  b e  v12+. . .+vn2 s i n c e  t h e  d o t  p r o d u c t  i s  d e f i n e d  w i t h o u t .  

r e f e r e n c e  t o  any  m e t r i c .  However,  now, (kjl would  b e  max{ 1 vl 1 , .  .Ivnl  1 
2 ...h e n c e  lbi12 = max(vl  , , v  2}. C e r t a i n l y ,  t h e r e  i s  no r e a s o n  t o  e x p e c t

n 
t h a t  

. 2
I n  o t h e r  w o r d s ,  v.1- IbI1 n e e d  n o t  b e  t r u e  f o r  t h e  Minkowski  m e t r i c . )  
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"invent" a d e f i n i t i o n  of what it meant t o  divide a number by a vector.  
Af te r  much experimentation i n  terms of the l o g i c a l  consequences, we 

'I ' 

accepted a s  t he  main de f in i t i on :  

I£  c is  any r e a l  number and v is any non-zero vector  then -C i s  that . . ,-
vector  which is  i n  t h e  d i r ec t i on  of v and whose magnitude Ts -.C *  

& 

tkl 
I f  w e  now re tu rn  t o  t he  d e f i n i t i o n  of f ' (a )  a s  given by (2) , w e  f i nd-
t h a t  w e  have solved one problem bu t  have created another. That i s ,  
w e  became s o  worried about what it meant t o  divide a number by a 

vector  t h a t  w e  went no f u r t h e r  with (2) bu t  r a t h e r  began an immediate 
inves t iga t ion  i n t o  how t h i s  quo t i en t  should be defined. Having solved 

t h i s  problem, w e  a r e  now ready t o  discover  t h a t  a new major problem 

looms before us. Namely, we have previously agreed (and- for  good 

reasons) t h a t  when w e  wrote Ax+Olim the  meaning was t h a t  not  only should 

the  l i m i t  e x i s t  bu t  i t s  value must no t  depend on the  d i r ec t i on  by 

which Ax- approached -0. On the  o the r  hand, one conseguence of our 

d e f i n i t i o n  of t he  quot ien t  of a number divided by a vec tor  i s  t h a t  

the  vector  which is denoted by the  quo t i en t  changes a s  Ax changes 

direct ion!  That is, t h e  quot ien t  was defined a s  a vector  i n  the  

d i r e c t i o n  of Ax, s o  t h a t ,  i f  Ax- i s  no t  r i g i d l y  spec i f ied ,  t he  quot ien t  

is, i n  a sense,  undefined s ince  we have no way of determining the  

d i r ec t i on  of t he  quot ien t .  

Thus, it appears t h a t  another refinement i s  required before we can 

work with ( 2 ) ,  and it is  t h i s  refinement t h a t  motlvates t he  meaning 

of a d i r e c t i o n a l  der iva t ive .  More s p e c i f i c a l l y ,  it w i l l  happen q u i t e  

i n  general  t h a t  t he  l i m i t  i n  (2) w i l l  depend on the  d i r ec t i on  by which 

Ax- approaches 0, f o r  not only does changing t h e  d i r ec t i on  of Ax-
a f f e c t  t he  denominator of our quot ien t ,  it a f f e c t s  the numerator a s  

w e l l  s i nce  f ( a- + Az) w i l l ,  i n  general ,  depend an the d i r ec t i on  of Ax. 

Thus, it would appear t h a t  i f  w e  held  t o  (2) without some modification,  

f '  ( a )  - would never e x i s t  s ince  t he  l i m i t  which def ines  f '  (5) w i l l  no t  

* C 
A c t u a l l y ,  i t  i s  p o s s i b l e  t h a t  e i s  n e g a t i v e  i n  which e a s e  -

111 I1 
cannot be a  magnitude ( s i n c e  magnitudes a r e  n o n - n e g a t i v e ) .  What we 

1c1
should say  i s  t h a t  t h e  magnitude i s  - and t h a t  if c i s  n e g a t i v e  

- 1k11 -

-C has t h e  o p p o s i t e  s e n s e  o f  1. 
V 



I 

e x i s t  ( s ince  f o r  t he  l i m i t  t o  e x i s t  i t s  value must no t  depend upon 

how Ax+O). - - W e  s h a l l  t r y  t o  c l a r i f y  t h i s  po in t  i n  a  few moments by 

means of a s p e c i f i c  example (with o the r  examples being supplied i n  
the  ~ x e r c i s e s ) ,  bu t  f i r s t  we p re fe r  t o  remove the  new p i t f a l l .  

W e  now agree t o  remove any ambiguity from (2 )  by specifying a 

p a r t i c u l a r  d i rec t ion .  (It i s  o f t en  conventional t o  specify  a  d i r ec t i on  

i n  n-dimensional space i n  terms of a  u n i t  vector.  Qu i t e  o f t en ,  i n  

f a c t ,  a  u n i t  vector  i s  c a l l e d  a  d i rec t ion .  For example, i n  terms of 

a  p lanar  example, $ f + $ 3 is a  u n i t  vector  i n  the di rec t ion  of 

3 f + 4 3. I n  t h e  modern vernacular,  w e  would say 5 f + :3 is  a 

d i r ec t i on ,  and any s c a l a r  mul t iple  of this vector  would be s a i d  t o  have 

t he  same d i r ec t i on . )  In  any event ,  i f  w e  l e t  u denote a  s p e c i f i c  

d i r e c t i o n ,  w e  may think of Ax a s  always being i n  the di rec t ion  of -u, 

and t h a t  i n  t h i s  context  Ax+g - means t h a t  the  d i r ec t i on  of Ax- s tays  

f ixed  bu t  i t s  magnitude approaches 0. 
t , i  . - .  

The next  quest ion i s  t h a t  of f inding a  way t o  change the  notat ion i n  

( 2 )  t o  r e f l e c t  t h i s  idea. To t h i s  end, w e  observe t h a t  once t he  

d i r ec t i on  g i s  f ixed,  a l l  o the r  vectors  i n  t h i s  d i r ec t i on  a re  of the  

form t u  - where t i s  a r e a l  number. Thus, r a t h e r  than wr i te  Ax, - which 

c a r r i e s  t he  connotation 0 f . a  varying d i r ec t i on ,  w e  w r i t e  tu. With 

t h i s  i n  mind, the  l e f t  s i d e  of (2) becomes ambiguous s ince  it does 

no t  i n d i c a t e  the  d i r e c t i o n  u_. For t h i s  reason, we agree t o  rewri te  , =  -

.. .f 1  (a )  - a s  fU1(5) and w e  c a l l  t h i s  t he  der iva t ive  of f a t  5 i n  the  


d i r e c t i o n  E. 

A t  t h e  same t i m e ,  replacing Ax by tg converts t he  r i g h t  s i d e  of 


(2)  i n t o  - I 
J 

2_.. . 

Istt~)- f f ~ )  
L 

(121 

- . ? 
;.mo- - [f t u  I . . -1 , 


and since -u is a u n i t  vector ,  t;+g i f  and only i f  t + O .  Moreover, 

s i n c e  t: and are t o  have t he  same sense,  t M ;  hence, t+O may be -

replaced by t+0+. Thus, (12) may be rewr i t t en  a s  
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I 

b 
-. . - . .,T, 4.. % -.. -. - ,  - .' -1 .- 1,. -.-,-.q v.k8 . - b, 

..i 

The bracketed expression i n  (13) denotes t he  vector  i n  t he  d i r ec t i on  : 

of (u)- whose magnitude is . , % . 

and t h i s  i n  t u rn  i s  I! 
a' ; 

Then s ince  ntull = I tl UgIl (and s ince  t > O ,  It1 =. t) and = 1 by. . 
I 

L , 

v i r t u e  of being a u n i t  vector ,  w e  have 
, I ,  _. . - 1 =I--

: 

t 
8 

The bracketed expression on the  r i g h t  s i d e  of (14) represen ts  the  

average r a t e  of change of f (x) - i n  t he  d i r ec t i on  u with respec t  t o  -
IkII a s  -x v a r i e s  from x = -a t o  x = a+tu. Thus 

*.'* -
F .  

l i m  f (a+tu) - f (5)-

represents  the instantaneous r a t e  of change of f ( x )  with respec t  t o  

ltfll i n  the d i r ec t i on  -u a t  x- = -a.  

If  we make these  changes ( 2 )  becomes 

Equation (15) summarizes r a t h e r  n ice ly  the idea t h a t  f l u ( % )  is a 

vector  i n  t he  d i r ec t i on  (of )  -u whose magnitude is the der iva t ive  of 

f (x) - with respec t  t o  Ilxll- a t  -x = -a i n  the  d i r ec t i on  u. - .. 



Thus, it is n a t u r a l  t o  view f U u ( a )  a s  a d i r e c t i o n a l  der iva t ive ,  t h a t  

is ,  a de r iva t i ve  i n  the  directzon -u. Notice t h a t  i f  w e  use the  

general ized d e f i n i t i o n  of d i r ec t i on  t h a t  app l ies  t o  a l l  dimensional 

vector  spaces,  then (15) i s  v a l i d  f o r  any dimensional space, and, i n  

p a r t i c u l a r ,  i f  we restrict our a t t en t ion  t o  t he  spec i a l  case of 

p lanar  arrows, it should be easy t o  see  t h a t  (15) i s  equivalent  t o  

t he  d e f i n i t i o n  of a d i r e c t i o n a l  de r iva t i ve  a s  given i n  t he  t e x t  and 
' s tud ied  a s  p a r t  of t he  previous un i t ,  

Perhaps a s p e c i f i c  example i n  which we compute a d i r ec t i ona l  der iva t ive  

i n  t he  plane using each of t he  two methods and then show t h a t  the  

answers a r e  t he  same, might be of more b e n e f i t  -than an attempt t o  

make an abs t r ac t ,  formal proof. To t h i s  end, l e t  us consider the 
-I 

problem of f inding the  d i r e c t i o n a l  der iva t ive  of the  surface w u x4y
-

a t  the  po in t  (2,3,12) 3: i n  t he  d i r ec i t on  of the  vector  +,. 43.  Using 
the  t r a d i t i o n a l  approach, w e  have t h a t  f ( x )  = f ( x , y )  = x L y ,  whence 

fx(x ,y)  = 2xy and f  (x,y) = x . Therefore, fx (2 ,3)  = 12 and 
Y 

f y (2 ,3 )  = 4 .  Accordingly, t he  grad ien t  of f a t  (2.3) i s  121 + 4J, 
3-t 4tand a u n i t  vec tor  i n  t h e  given d i r ec t i on  i s  51 + SJ .  Since the  

des i r ed .d i r ec t i ona1  de r iva t i ve  is the  do t  product of the  grad ien t  and 

the  given u n i t  vec tor ,  we ob ta in  a s  the  d i r e c t i o n a l  der iva t ive  

If  we now use t he  method of this sec t ion ,  we have 



and . . 

Then, s ince  f ( a )  - = f ( 2 , 3 )  = 12 we have 

f  (a - + ts) - f (5) = 52t/5 + 3 t2 + 36t3/125, and 

I£ w e  now l e t  t+0+, w e  ob ta in  from (15) 

which i s  a vector  whose magnitude is  52/5 and whose d i r ec t i on  i s  
3-tu = - 1 +  ~34-t , and t h i s ,  of course, has t he  same d i r ec t i on  a s  3: + 43.5 

W e  thus  see  t h a t  w e  ob ta in  the  same answer i n  both cases. 
. .. 

Let us a l s o  observe t h a t  the  method of t h i s  chapter does not  require  : .  

t h a t  we be aware of t he  concept of the  grad ien t  ( t h a t  is, i n  der iving 

(16) we never used anything but  t he  expressions implied i n  (15) ,  and 

ce r t a in ly  no notion of t h e  grad ien t  i s  presen t  t he re ) .  Not only d id  

w e  no t  need the  grad ien t ,  bu t  w e  had no need t o  t a l k  about p a r t i a l  J .  . 

der iva t ives .  This i s  a s  it should be, s ince  t he  p a r t i a l  der iva t ives  

a r e  merely de r iva t i ve s  with respec t  t o  some highly s e l ec t i ve  d i rec t ions .  

I n  t h i s  respec t  we can compute fVu(g)from (15) i n  any vector  space, . 

without regard t o  e i t h e r  a gradieKt o r  p a r t i a l  der iva t ives .  Such 

addi t iona l  examples a r e  l e f t  f o r  the  exercises .  Before ending t h i s  

sec t ion ,  however, w e  f e e l  it might provide a new i n s i g h t  t o  calc'ulus 

of a s i n g l e  r e a l  va r i ab l e  if we apply t he  discussion of t h i s  sec t ion  

t o  a 1-dimensional vector  space. 



I; 

To t h i s  end, observe t h a t  i n  1-dimensional space our vectors (1-tuples) 

a re  simply r e a l  numbers. Thus, the vector -a may be iden t i f i ed  with 

the number, a. Moreover, i n  1-dimensional space there a re  only the 
-+two u n i t  vectors,  f and -1. (Geometrically, the space i s  the x-axis 

and along the x-axis any vector  is a sca la r  multiple of f. 
Now, r e c a l l  t h a t  one way of saying t h a t  f 8 ( a )  exis ted was t o  say t h a t  

both 

[ f (,AX, £ (a )  ] and l i m  [ f (a+Axkx- f (a) 
AXM+ AX+O- I1, 

e x i s t  a r e  equal. 

But 

is a d i r ec t iona l  der ivat ive.  It is the derivat ive i n  the d i rec t ion  

t h a t  ~ x + d  through pos i t ive  values, t h a t  is, from r ight- to- lef t ,  and 

t h i s ,  i n  turn,  is the d i r ec t ion  -1. In other  words, using the 

notation of t h i s  sect ion,  

and 


Thus, from (17) our new language says t h a t  f' (a) e x i s t s  i n  1-dimens5onal 

space i f  and only i f  the  two d i r ec t iona l  der ivat ives  (where both 
d i rec t ions  d i f f e r  only i n  sensej e x i s t  and a re  equal. 

The Derivative i n  n-Space 

Our attempts t o  define the derivat ive of a function f:En+E by mimicking 

the  1-dimensional case has l ed  t o  the  "invention" of the d i rec t ional  



de r iva t i ve .  The t rouble  with t h e  d i r e c t i o n a l  de r iva t i ve  is t h a t  it 

may e x i s t  i n  some d i r ec t i ons  bu t  no t  i n  o thers .  This is easy t o  

p i c t u r e  i n  t he  case f : E ~ + E s ince  then t h e  graph of f i s  a sur face ,  

and what w e  a r e  then saying is t h a t  some cross  sec t ions  of t h i s  

sur face  through a  given po in t  may be smooth while o the r s  a r en ' t ,  

I f  w e  s t i l l  think of t h e  de r iva t i ve  a s  denoting "smoothness" 

(without worrying about what t h i s  means i n  high dimensions), then 

unless  the  d i r e c t i o n a l  de r iva t i ve  e x i s t s  i n  every d i r ec t i on  (i.e. , 
every s l i c e  through the  po in t  i s  smooth) the  sur face  w i l l  n o t  be 

smooth. S t a t ed  more pos i t i ve ly ,  we def ine  a  sur face  t o  be smooth 

a t  a  po in t  i f  t h e  d i r e c t i o n a l  de r iva t i ve  e x i s t s  i n  each d i r ec t i on  

a t  t he  given point .  

With t h i s  a s  motivation,  it i s  an easy s t e p  t o  genera l ize  t he  d e f i n i t i o n  

(even i f  t he  geometric i n t e r p r e t a t i o n  may no longef apply) .  Namely, 
we say t h a t  ~:E"+E is d i f f e r e n t i a b l e  a t  -x = -a i f  and only i f  f',(a)-
e x i s t s  i n  every d i r e c t i o n ,  u.-

While t he  above discussion i s  an adequate i n t u i t i v e  motivation,  w e  

can support  t he  argument f o r  our  d e f i n i t i o n  of d i f f e r e n t i a b i l i t y  on 

more computational grounds a s  w e l l .  Namely, w e  would l i k e  t h e  

d e f i n i t i o n  of a de r iva t i ve  t o  be independent of any p a r t i c u l a r  choice 

of d i r ec t i on .  Why i s  t h i s  so? Perhaps t he  following p i c t o r i a l  

demonstration i n  the  case  n=2 w i l l  shed some l i g h t  on t he  answer. 

Suppose f ( x , y )  is def ined i n  some neighborhood N of (a,b) and we 

choose (c,d) t o  be any o the r  po in t  i n  t h i s  neighborhood. To 

emphasize t h a t  (a,b) i s  our foca l  po in t ,  w e  s h a l l  rewrite (c,d) a s  

(a+h, b+k) where h  and k a r e  constants  which depend on the  choice of 

t he  po in t  (c ,d ) .  [To be more s p e c i f i c ,  h  i s  what w e  would o rd ina r i l y  
c a l l  Ax and k is Ay]. 

(Figure 3) 



Somehow w e  expect t h a t  t he  de r iva t i ve  of f ,  no mat ter  how we u l t imate ly  

def ine  it, must involve Af [which denotes f (a+h, b+k) - f (a,b) I .  Now, 

once h and k a r e  spec i f ied ,  f (a+h, b+k) - f (a ,b)  i s  a well-defined 

number which i n  no way depends on d i rec t ion .  Moreover, when w e  f i n a l l y  

take t he  appropria te  l i m i t ,  w e  want an answer which w i l l  not  depend 

on the  path which joins  (a+h, b+k) t o  (a ,b ) t  f o r  i f  the  answer does 

depend on the  path,  t he  l i m i t  does no t  e x i s t .  To be sure ,  the  usage 

of fx ( a ,b )  and f (a,b) u t i l i z e  paths such a s  i n  Figures 4a and 4b, 
Y 

b u t  our answer must hold f o r  a r b i t r a r y  (and no t  necessar i ly  s t r a i g h t  
. .>,-

l i n e )  pa ths  a s  i n  Figure 4c. -

(a )  (b) (c) 

(Figure 4 )  
. .  _ .  

, '  . p 
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The spec i a l  r o l e  of t he  d i r e c t i o n a l  der iva t ive  i n  t h i s  context i s  

shown i n  Figure 5. .iY ' 

(Figure 5) 



That is, once (a+h,b+k) i s  chosen the  d i r e c t i o n a l  de r iva t i ve  assumes 

t h a t  t he  path  is the s t r a i g h t  l i n e  which joins  (a+h,b+k) t o  ( a ,b ) .  

In  t h i s  sense,  once t h e  s t r a i g h t  l i n e  i s  determined, the  po in t s  

(x,y) f o r  which w e  evaluate  f  (x,y) a l l  l i e  on t h i s  l i n e ,  s o  t h a t  i n  

computing a d i r e c t i o n a l  der iva t ive  we do have t h e  analog of the  

1-dimensional der iva t ive .  The only problem i s  t h a t  t h i s  de r iva t i ve ,  

a s  w e  have seen,  v a r i e s  w i t h  d i rec t ion .  

W e  should a l s o  po in t  o u t  t h a t  while, a s  i n  Figure 4 ,  our paths  do no t  

have t o  be s t r a i g h t  l i n e s ,  w e  may assume ( a t  l e a s t  i n t u i t i v e l y  i n  the  

case n=2) t h a t  they are s t r a i g h t  l i ne s .  Namely, a s  w e  take l i m i t s ,  

w e  a r e  only i n t e r e s t e d  i n  what happens "near" the po in t  (a ,b ) .  Thus, 

i f  near  (a ,b)  t he  path which joins  (a+h,b+k) t o  (a,b) is not  a 

s t r a i g h t  l i n e ,  w e  may replace it by the  s t r a i g h t  l i n e  which is  

tangent t o  t he  path  a t  (a ,b ) ,  assuming of course, t h a t  t h e  path is 

smooth. (See Figure 6 )  

I n  N1 t h e  path  and the tangent 

l i n e  a r e  e s s e n t i a l l y  the  same. 

-\---

(Figure 6)  

Thus, t h i s  discussion,  too,  motivates why i n  formulating the  d e f i n i t i o n  
of t he  de r iva t i ve  of a function of s eve ra l  (n) r e a l  var iab les  we f i r s t  

i n s i s t  t h a t  the  d i r e c t i o n a l  der iva t ive  of f  a t  5 e x i s t  i n  every 

d i r ec t i on .  

Now t h a t  w e  have given a few motivations f o r  def ining f  t o  be d i f fe ren-  

t i a b l e  i f  i t s  d i r e c t i o n a l  der iva t ive  e x i s t s  i n  each d i r ec t i on ,  t he  next  

s u b t l e  po in t  is the  choice of how the de r iva t i ve  of f  should be defined. 

That is ,  t he re  i s  a d i f fe rence  between saying t h a t  f  is  d i f f e r en t i ab l e  

and determining what the  de r iva t i ve  ac tua l ly  is. For reasons t h a t  w e  

hope w i l l  be made c l e a r e r  a s  w e  proceed, l e t  us def ine  the  der iva t ive  

of f a t  -x = -a t o  be the  d i r e c t i o n a l  de r iva t i ve  of f  a t  -a which has t he  



g r e a t e s t  magnitude. Notice t h a t  this int roduces  the add i t i ona l  sub t l e ty  

t h a t  there  must -be a de r iva t i ve  of maximum magnitude. T h i s  is no t  a t  
a l l  se l f -ev iden t  (and indeed it need not  be t r u e ,  although w e  s h a l l  

no t  pursue t h i s  mat ter  here)  s ince  there  a r e  i n f i n i t e l y  many d i r ec t i ona l  
de r iva t i ve s  of f a t  a ,  and f o r  an i n f i n i t e  s e t  there  need no t  be a-
( f i n i t e )  upper bound. 

While it may no t  be c l e a r  y e t  why w e  choose this de f in i t i on ,  what 

should be c l e a r  i s  t h a t  s ince  the  d i r e c t i o n a l  der iva t ive  va r i e s  from 

d i r e c t i o n  t o  d i r ec t i on ,  w e  must somehow o r  o the r  make a choice t h a t  

p icks  one of these  values from a l l  o thers  ( i n  much the  same way a s  w e  

had t o  choose one vector  from the  set of vec tors ,  $1. How s h a l l  we 

make t h i s  choice? A s  usual ,  we s h a l l  l e t  the  most-important 

app l ica t ion  of t he  concept determine t he  de f in i t i on .  In  this case ,  

w e  f i nd  t h a t  w e  s h a l l  usual ly  be t ry ing ,  i n  one form o r  another, t o  

make the expression I f ( 5 )  - f ( a ) l  " s u f f i c i e n t l y  smalln regardless  of -
how -x approaches 5, but  i f  w e  want. 1 f  (x) - - f  (a )  - 1 t o  be s u f f i c i e n t l y  

small ,  then w e  need only insure  t h a t  it is s u f f i c i e n t l y  small i n  t he  

d i r ec t i on  i n  which it i s  t h e  g rea t e s t .  

I f  w e  now le t  f'(5)denote t h e  d i r e c t i o n a l  der iva t ive  of f  a t  -a 


whose magnitude i s  maximum, this problem is taken care  of.  ( A  more 


formal way of saying this is t h a t  the d i r e c t i o n a l  der iva t ive  behaves 


l i k e  an ordinary 1-dimensional de r iva t i ve  i n  t h e  given d i rec t ion .  


That is, i f  f'U(z?l) e x i s t s  then 
-

lim k = 0 and Ax is  i n  the d i r ec t i on ,  u. A l l  w e  a r e  then saying . 	where  *x+O - - - -
i s  t h a t - ~ f  is  maximum when f  ' -(a) is  maximum i n  magnitude. 

A t  any r a t e ,  t h i s  completes our supplementary discussion of the  


de r iva t i ve  of a funct ion of s eve ra l  var iab les .  A s  a  review, so  t h a t  

we see  where a l l  the  pieces  f i t  i n t o  place,  l e t  us observe t h a t  i n  


Unit 3 w e  d iscussed the grad ien t  and the d i r e c t i o n a l  der iva t ive  i n  


terms of f x  and f  (using the  2-dimensional no ta t ion) . While it was 

Y 

no t  s p e c i f i c a l l y  mentioned i n  t he  t ex t ,  the  concept of d i f fe ren-  

t i a b i l i t y  of f a t  x - = -a required t h a t  f x  and f  e x i s t  a t  a - and be 
Y 


continuous t he re  a s  w e l l .  
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