1. Overview

In this unit, we analyze the notion of what is meant by the dimension of a vector space. The basic idea involves finding the fewest number of vectors that span the given space, and this, in turn, involves some knowledge of the concept of linear independence.
2. Lecture 3.020

a.

b.

C.
3. Exercises:

3.2.1(L)

Let V be the vector space of 4 -tuples (relative to a particular set of four vectors) and let $\alpha_{1} \varepsilon V$ be defined by $\alpha_{1}=(1,2,3,4)$.
a. Describe the space $S\left(\alpha_{1}\right)$ [i.e. the space spanned by α_{1}] and show that $\alpha_{2}=(2,5,7,7) \notin S\left(\alpha_{1}\right)$.
b. Describe the space $\mathrm{S}\left(\alpha_{1}, \alpha_{2}\right)$.
[Note: At this time, Exercise 3.1.10 of the previous unit should no longer be viewed as optional. If you have not done this exercise before, you should do it now, especially if the notation $s\left(\alpha_{1}, \alpha_{2}\right)$ is strange to you.]
c. Show that $\alpha_{3}=(3,7,8,9) \notin S\left(\alpha_{1}, \alpha_{2}\right)$.
d. For what value (s) of y and z does $(3,7, y, z)$ belong to $S\left(\alpha_{1}, \alpha_{2}\right)$?
$3.2 .2(\mathrm{~L})$
a. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \varepsilon V$. Show that
$S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=S\left(\alpha_{1}, \alpha_{3}, \alpha_{4}, \alpha_{2}\right)$.
b. Show that $s\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=s\left(3 \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.
c. Show that $S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=S\left(\alpha_{1}+\alpha_{2}, \alpha_{2}, \alpha_{3}\right)$.
$3.2 .3(\mathrm{~L})$
Let $\alpha_{1}=(1,2,3,4), \alpha_{2}=(2,5,7,7)$, and $\alpha_{3}=(3,7,8,9)$.
a. Use the row-reduced matrix technique to find $\beta_{1}, \beta_{2}, \beta_{3}$ such that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \varepsilon S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ if and only if $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $x_{1} \beta_{1}+x_{2} \beta_{2}+x_{3} \beta_{3}$.
b. Using part (a), show how x_{4} must be related to x_{1}, x_{2}, and x_{3} if $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. In particular, show that $(4,9,13,14) \notin S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.
c. Show that $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$, where the β^{\prime} s are as in part (a), is a linearly independent set.

Block 3: Selected Topics in Linear Algebra
Unit 2: The Dimension of a Vector Space
$3.2 .4(\mathrm{~L})$
Let $\alpha_{1}=(1,2,3,4), \alpha_{2}=(2,3,5,5), \alpha_{3}=(2,4,7,6)$, and $\alpha_{4}=(-1,2,3,4)$.
a. Use the row-reduced matrix technique to determine $S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. In particular, show that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ if and only if $x_{4}=5 x_{2}-2 x_{3}$.
b. Show that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ is linearly dependent by exhibiting α_{4} as a linear combination of α_{1}, α_{2}, and α_{3}.
c. Express $(4,7,12,11)$ as a linear combination of $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4}.
3.2 .5 (L)

Let $\alpha_{1}=(1,2,3), \alpha_{2}=(2,4,6), \alpha_{3}=(3,7,8), \alpha_{4}=(1,3,2)$, and $\alpha_{5}=(1,-2,7)$.
a. Show that $S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=S\left(\beta_{1}, \beta_{2}\right)$ where $\beta_{1}=(1,0,5)$ and $\beta_{2}=(0,1,-1)$. In particular, what is the dimension of $S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)$?
b. Express β_{1} and β_{2} as linear combinations of α_{1} and α_{3}. Also show how α_{2}, α_{4}, and α_{5} may be expressed as linear combinations of α_{1} and α_{3}.

3.2 .6 (L)

a. Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m} \varepsilon V$. Suppose that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ span V and that $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ is linearly independent. By appropriately investigating the set $\left\{\beta_{1}, \ldots, \beta_{m}, \alpha_{1}, \ldots, \alpha_{n}\right\}$, in the given order, conclude that $n \geqslant m$.
b. Let $\alpha_{1}=(1,1,1,1,1), \alpha_{2}=(1,2,2,3,3)$ and $\alpha_{3}=(2,3,4,3,6)$. Augmenting $\alpha_{1}, \alpha_{2}, \alpha_{3}$ by $u_{1}=(1,0,0,0,0), u_{2}=(0,1,0,0,0)$, $u_{3}=(0,0,1,0,0), u_{4}=(0,0,0,1,0)$, and $u_{5}=(0,0,0,0,1)$ in the given order, construct a basis for E^{5} which includes $\alpha_{1}, \overline{\alpha_{2}}$, and α_{3} by using the row-reduced matrix technique.
3.2 .7

Let $\alpha_{1}=(1,3,-1,2), \alpha_{2}=(2,0,1,3), \alpha_{3}=(-1,1,0,0)$.

[^0]3.2 .7 continued
a. Show that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \& \mathrm{~S}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leftrightarrow 5 \mathrm{x}_{1}+5 \mathrm{x}_{2}+8 \mathrm{x}_{3}-6 \mathrm{x}_{4}=0$.
b. What is the dimension of $S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and what is a natural basis for $S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$? [That is, find $\beta_{1}, \beta_{2}, \beta_{3}$ such that $\left.\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leftrightarrow\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \beta_{1}+x_{2} \beta_{2}+x_{3} \beta_{3}.\right]$
3.2 .8

Let $\alpha_{1}=(1,2,3), \alpha_{2}=(2,5,4), \alpha_{3}=(3,8,9)$, and $\alpha_{4}=(4,9,9)$.
a. Show that the dimension of $S\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=3$. In particular, express $(0,0,1),(0,1,0)$, and $(1,0,0)$ as a linear combination of α_{1}, α_{2}, and α_{4}.
b. Express α_{3} as a linear combination of α_{1}, α_{2}, and α_{4}.
c. Express $(2,1,4)$ as a linear combination of α_{1}, α_{2}, and α_{4}.

3.2 .9 (L)

Show that the space of all polynomials cannot have finite dimension.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Complex Variables, Differential Equations, and Linear Algebra Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: (continued on next page)
 3.2 .4

