1. Overview

Armed with the computational know-how of the previous unit, we now return to the discussion begun in Unit 4 and investigate the existence of vectors v such that for a given linear transformation $f, f(v)$ is a (non-zero) scalar multiple of v. Geometrically, this means that we seek vectors whose direction is preserved by the given linear transformation. Such a vector is called a characteristic vector (in German, an eigenvector), and the scalar c for which $f(v)=c v$ is called an eigenvalue or a characteristic value.
2. Lecture 3.060

a.

Relative to \hat{i} and \vec{k}, matrix of $£ \infty\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ Relative to $\vec{i}=2 i+7$ and $\vec{v}_{2}=-2 z+\vec{z}_{1}$, the matrix of $\underline{E}_{n}\left[\begin{array}{ll}3 & 0 \\ 0-1\end{array}\right]$ $\left[f(\vec{j})=3 \vec{v}_{1}=3 \vec{v}_{1}+0 \vec{v}_{2}\right.$ $\left.f\left(\vec{r}_{2}\right)=-\vec{v}_{2}=\circ \vec{v}_{1}-1 \vec{v}_{2}\right]$ Matrix Approach $\begin{gathered} v=\left[u_{1}, \ldots u_{n}\right] \\ \left\{\begin{array}{l} f\left(w_{n}\right)=a_{1}, u_{1}+\cdots+a_{n n} u_{n} \\ \vdots \\ f\left(u_{n}\right)=a_{n}, u_{1}+\cdots+a_{n} u_{n} \end{array}\right. \end{gathered}$	$\begin{aligned} & v=x_{1} u_{1}+\cdots+x_{n} u_{n} \\ & X=\left[\begin{array}{ll} x_{1} & \cdots \end{array} x_{n}\right] \\ & A=\left[\begin{array}{lll} a_{n} & a_{n} \\ a_{n} & x_{n} \end{array}\right] \\ & f(v)=c v \rightarrow \\ & X A=C X \rightarrow \\ & X A-C X=0 \rightarrow \\ & X A-C X I=0 \\ & X(A-C I)=0 \\ & (A-c I)^{-1}=x \mid s t s \rightarrow X=0 \\ & \therefore \operatorname{det}(A-C I)=0 \end{aligned}$	$\begin{aligned} & A=\left[\begin{array}{ll} 1 & 4 \\ 1 & 1 \end{array}\right], c I=\left[\begin{array}{ll} c & 0 \\ 0 & c \end{array}\right] \\ & A-c I=\left[\begin{array}{cc} 1-c & 4 \\ 1 & 1-c \end{array}\right] \\ & \bar{A}=\left[\begin{array}{cc} 3 & 0 \\ 0-1 \end{array}\right] \rightarrow \bar{A}-C I=\left[\begin{array}{cc} 3-c & 0 \\ 0 & -c-c \end{array}\right] \end{aligned}$ Note $\# 1$ Mas use A^{\top} vathen than A $\begin{aligned} & X A=c X \rightarrow(X A)^{\top}=(c X)^{\top} \rightarrow \\ & A^{\top} X^{\top}=c X^{\top} \rightarrow A^{\top} X^{\top}=c I X^{\top} \rightarrow \\ & \left(A^{\top}-c I\right) X^{\top}=0 \rightarrow \\ & \operatorname{det}\left(A^{\top}-c I\right)=0 \\ & \operatorname{dct}(A-C I) \end{aligned}$

b.

3.6 .2

3. Exercises:
$3.6 .1(\mathrm{~L})$
a. Use the method shown in the lecture to find the eigenvectors of f if $f: V \rightarrow V$, where $V=\left[u_{1}, u_{2}\right]$, is the linear transformation defined by
$\mathrm{f}\left(\mathrm{u}_{1}\right)=-3 \mathrm{u}_{1}+2 \mathrm{u}_{2}$
$f\left(u_{2}\right)=4 u_{1}-u_{2}$
b. Find a basis for V such that relative to this basis the matrix of f is diagonal.
c. Interpret the results of (a) and (b) geometrically in terms of f mapping the $x y-p l a n e$ onto the uv-plane.
3.6 .2

Let $V=\left[u_{1}, u_{2}\right]$ and let the linear transformation $f: V \rightarrow V$ be defined by
$f\left(u_{1}\right)=8 u_{1}-15 u_{2}$
$f\left(u_{2}\right)=2 u_{1}-3 u_{2}$
Find the characteristic values of f and determine a basis for V which consists of eigenvectors. What is the matrix of f relative to this basis?
$3.6 .3(\mathrm{~L})$
If A is an n by n matrix and P is a non-singular n by n matrix, show that

$$
|A-c I|=\left|P A P^{-1}-c I\right|
$$

$3.6 .4(\mathrm{~L})$
Let $V=\left[u_{1}, u_{2}\right]$ and let $f: V \rightarrow V$ be the linear transformation defined by
3.6.4(L) continued
$f\left(u_{1}\right)=(\cos \alpha) u_{1}+(\sin \alpha) u_{2}$
$f\left(u_{2}\right)=(-\sin \alpha) u_{1}+(\cos \alpha) u_{2}$

Show that f has no eigenvectors unless α is an integral multiple of π.
3.6 .5

Let $V=\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ and let $f: V \rightarrow V$ be the linear transformation defined by
$f\left(u_{1}\right)=8 u_{1}+4 u_{3}$
$f\left(u_{2}\right)=9 u_{1}+2 u_{2}+6 u_{3}$
$f\left(u_{3}\right)=-9 u_{1}-4 u_{3}$
$f\left(u_{4}\right)=2 u_{2}+3 u_{4}$
a. Find the characteristic values of f.
b. Find a set of linear independent eigenvectors of f. In particular, describe the subspace V_{2} of V where
$\mathrm{V}_{2}=\{\mathrm{v} \varepsilon \mathrm{V}: \mathrm{f}(\mathrm{v})=\mathrm{cv}\}$.
$3.6 .6(\mathrm{~L})$
a. Let $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation. Suppose v_{1} and v_{2} are nonzero vectors in V, and that $f\left(v_{1}\right)=c_{1} v_{1}$ and $f\left(v_{2}\right)=c_{2} v_{2}$ where $c_{1} \neq c_{2}$. Prove that $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ is a linearly independent set.
b. Proceed inductively from (a) to show that if $v_{3} \neq 0$ and if c_{3} is unequal to $0, c_{1}$, or c_{2} and if $f\left(v_{3}\right)=c_{3} v_{3}$ then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.

Let $\mathrm{V}=\left[\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right]$ and let $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{V}$ be the linear transformation defined by
$f\left(u_{1}\right)=2 u_{1}+u_{3}$
$f\left(u_{2}\right)=-u_{1}+2 u_{2}+3 u_{3}$
$\mathrm{f}\left(\mathrm{u}_{3}\right)=\mathrm{u}_{1}+2 \mathrm{u}_{3}$
a. Let A denote the transpose of the matrix of coefficients of f given above, and use A to find the characteristic values of f.
b. Find a basis for V which consists solely of eigenvectors of f.
c. What is the matrix of f relative to the basis found in part (b) ?
d. Use the basis found in (b) to find a vector $\xi \in V$ such that $f(\xi)=$ v_{o}, where v_{o} is a given vector in v.
e. Using the technique described in (d), find a vector $v \in V$ such that $f(v)=\alpha_{1}+4 \alpha_{2}+12 \alpha_{3}$ where $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ denotes the basis found in (b).
f. With A as in part (a), find a matrix P such that $P^{-1} A P=D$, where D is the diagonal matrix
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.

3.6.8 (Optional)

a. Let A be the same matrix as that given in part (a) of the previous exercise. Show that A satisfies the matrix equation
$x^{3}-6 x^{2}+11 x-6 I=0$,
that is,
$A^{3}-6 A^{2}+11 A-6 I=0$.

3.6 .8 continued

How is this fact connected to the characteristic values of f where f is as given in the previous exercise?
b. In particular, use (a) to compute A^{7} as a linear combination of I, A, and A^{2}.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Complex Variables, Differential Equations, and Linear Algebra Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

