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Block 3: Selected Topics in Linear Algebra 


Unit 2: The Dimension of a Vector Space 


3.2.1(L) 


a. 	 Since S(a = (ca CER} and since al = (1,2,3,4), we see that 1 1: 
B€S(al) if and only if there exists a scalar c such that 

Hence, by (11, 


Hence, 


if and only if there exist real numbers cl and c2 such that 


The main problem with (2) is that it may not seem apparent how, 


for example, the last two components depend on the first two. 


That is, we know that once two of the four components of (2) are 


given, cl and c2 are determined, whereupon the other two components 


are uniquely determined. 


One thing that we might do is replace the first two components of 


(2) by the single symbols, say, x1 and x2. That is, we could make 


the substitutions 
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3.2.1(L) continued 

and 

from which it fol lows t h a t  

and 


I n  terms of row-reduced mat r i ces ,  w e  o b t a i n  (4) from (3) by 

From ( 4 )  , it is  r e a d i l y  seen t h a t  

whi l e  
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3 . 2 . 1  (L) continued 

Thus, i n  terms of xl and x2 ,  ( 2 )  becomes 

[ I n  terms of cl and c2 ,  (5)  says t h a t  3cl + 7c2 = (cl + 2 c 2 )  + 
(2c l  + 5c2) and 4 c l  + 7c2 = 6 ( c l  + 2c2) - (2c l  + 5c2), so t h a t  the 

las t  t w o  components of ( 2 )  are then  expressed i n  t e r m s  of the  

f i r s t  t w o  components.] 

The advantage of (5)  over ( 2 )  i s  t h a t  w e  can now t e l l  by inspec-

t i o n  whether (x1,x2 ,x3 ,x4) E S (a l ra2). Namely 

3 

and 1 
c. 	 L e t t i n g  

= " + x 2  
a3 = (3.7.8.9).  w e  see f r o m  ( 6 )  t h a t  a3 4 S(a l ,a2) .  

Namely, i n  th i s  case, xl = 3 ,  x2 = 7 ,  and x3 = 8;  hence, 

X3 # X1 + X2 ' 

d. 	 Knowing t h a t  fl = ( 3 , 7 , y , z )  , w e  see from ( 6 )  t h a t  

E s(a1,a2) * y = 3 + 7 and z = 6(3) - 7 .  

Hence, for f3 t o  belong t o  S (a l , a2 ) ,  it must be t h a t  

W e  s h a l l  r ev i s i t  t h i s  exercise as a note  t o  Exercise 8 .2 .2 .  

3 . 2 . 2 ( L )  

The main a i m  of t h i s  exercise i s  t o  i l l u s t r a t e  some " t r i cks  of t h e  

trade" i n  f i n d i n g  t he  space spanned by a se t  of vectors. W e  have 

chosen some special  cases, each of which s h a l l  be expanded w i t h i n  
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t h e  c o n t e x t  of o u r  s o l u t i o n ,  t o  show how w e  can r e p l a c e  v e c t o r s  i n  

t h e  g iven set by o t h e r  v e c t o r s  which span t h e  same space.  This  

new technique  w i l l  supply us  wi th  a "nea te r "  way of ob ta in ing  t h e  

same r e s u l t s  a s  t h o s e  of t h e  type  obta ined i n  t h e  previous  

e x e r c i s e .  

Thus, B E W means t h e r e  e x i s t  r e a l  numbers cl, c2, c3, and c4 such 

t h a t  

But s i n c e  v e c t o r  a d d i t i o n  i s  a s s o c i a t i v e  and commutative, w e  have 

from (1) t h a t  

-Note 

(i) The s i g n i f i c a n c e  of t h i s  p a r t  of t h e  e x e r c i s e  is  t o  show t h a t  

t h e  space spanned by any set  of v e c t o r s ,  (a1, ..., an} does n o t  

depend on t h e  o r d e r  i n  which t h e  v e c t o r s  a r e  l i s t e d .  True, w e  

have taken t h e  s p e c i a l  c a s e  n = 4 and t h e  p a r t i c u l a r  r eo rde r ing  

g iven by ( 2 ) ,  b u t  i n  t h e  same way w e  der ived (21, w e  could have 

shown how o t h e r  rearrangements could be  made, and t h e  c a s e  n = 4 

was chosen only  t o  g e t  away from t h e  usua l  geometric  a s s o c i a t i o n  

of i d e a s .  Any o t h e r  va lue  of n would work j u s t  a s  w e l l .  
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3 .2.2 (L) continued 


(ii) In terms of linear structure, this exercise is analogous to 


the statement that the solution set of a system of algebraic equa- 


tions does not depend on the order in which the equations are 


written. 


b. 	Let 

wl = s(alla2,a3) = {clal + c2a2 + c3a3: c1,c2.c3 E R I  

and 

Then, if f3 E Wlr 

1 
or 	letting kl = 3,k2 = c2, and k3 = c3, 

That is, $ E W l +  B E W Hencel 

2 ' 

W1 C w2. 


Similarly, 


7 E W 2 +  


y = 3 k a1 1 + k2a2 + k3a3'


so letting cl = 3kl, c2 = k21 C3 = k31 

S.3.2.5 
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3.2.2(L) continued 


Y = C1al + c2a2 + c3a3 E S(alIa2,a3) = W1. 

Therefore, 


Hence, (6) and (7) , together, imply that W1 = W2. 

Note
-
(i) Again what is important here is the fact that the space 

spanned by {al, ..., an) is unchanged if one of the vectors ai is 
replaced by a non-zero multiple ciai. In our example, we took 

i = 1, but by part (a) this was no loss of generality. Namely, 

whatever ai was replaced by ciai, we could have rearranged 

(al, ..., an) so that ai appeared first in the listing. Moreover, 

we picked ci = 3. All that was important was that ci # 0. For if 

ci = 0, we see from (5) that we would have to divide by 0, which 

is not permitted. 

(ii) The analogy here to systems of equations is that if we re- 


place one equation by a constant multiple of that equation, we do 


not change the solution set of the system. 


Therefore, 
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3.2.2 (L) continued 


Similarly, 


Therefore, 


So comparing (8) and (9), we have that W2 = W1. 

Note 


(i) What we have illustrated here is that if we are studying the 

space spanned by {a1, ..., an), we may replace any ai by itself 

plus any multiple of another, say, ai by ai + k.a (where in our 
I j


example i = 1, j = 2 and for computational simplicity, k = 1),
j


without changing the space spanned by the vectors. 


(ii) Since the three properties developed in parts (a), (b) and 


(c) are precisely the properties that one needs in order to use 


row-reduced matrix techniques, it should be clear that this matrix 


technique may be used to find the space spanned by a given set of 


vectors. To illustrate this idea, we shall revisit Exercise 3.2.1 


in the form of a note. 


NOTE ON MATRIX CODING SYSTEM 


Suppose we want to determine the space spanned by al = (1,2,3,4) 

and a2 = (2,5,7,7). We may use a 2 by 4 matrix in which the first 

row represents the components of al and the second row, the com- 

ponents of a2. We then have 
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3.2.2 (L) continued 

Now w e  have seen i n  t h i s  e x e r c i s e  t h a t  t h e  space spanned by al and 

a i s  n o t  a l t e r e d  i f  w e  r e p l a c e  al by a non-zero m u l t i p l e  of a2 1' 
say ,  -2a1 [which i s  p r e c i s e l y  t h e  m u l t i p l e  of t h e  f i r s t  row of (1) 

t h a t  must b e  added t o  t h e  second row when w e  u s e  t h e  u s u a l  row-

reduc t ion  technique] .  

Thus, t h e  ma t r ix  

which i s  row-equivalent t o  ( 1 1 ,  t e l l s  us  t h a t  t h e  space spanned by 

a1 and a 2  i s  t h e  same a s  t h a t  spanned by -2a1 and a2. 

I n  f a c t ,  proceeding q u i t e  mechanical ly,  w e  have 

I n  t e r m s  of our  code, (1), (21, (3) , and ( 4 )  say  t h a t  

*We u s u a l l y  o b t a i n  ( 4 )  f rom (1 )  b y  t h e  s i n g l e  s t e p  o f  r e p l a c i n g  
t h e  s e c o n d  row o f  ( 1 )  b y  t h e  s e c o n d  minus  t w i c e  t h e  f i r s t .  We 
h a v e  i n c l u d e d  ( 2 )  and ( 3 )  t o  e m p h a s i z e  t h e  v a l i d i t y  o u r  c l a i m  t h a t  
(1)  and ( 4 )  c o d e  t h e  same s p a c e  i n  t e r m s  o f  t h e  b a s i c  p r o p e r t i e s  
d e s c r i b e d  i n  t h i s  e x e r c i s e .  



Solu t ions  
Block 3 :  Se lec ted  Topics i n  Linear  Algebra 
Uni t  2: The Dimension of a Vector Space 

3.2.2(L) continued 

I n  s t i l l  o t h e r  words, i f  we l e t  B 2  = a 2  - 2al = ( 0 , 1 , 1 , - l ) ,  then  

I f  we now complete t h e  row-reduction of (1), we see from ( 4 )  t h a t  

Using our  code, (5) te l ls  us  t h a t  

where 

and 

Now, B1 and B 2  have a ve ry  n i c e  form which he lp  us express  

S(a1,a2) more convenient ly .  Namely, 

which checks wi th  our  r e s u l t  i n  Exerc ise  3.2.1. 
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From another  p e r s p e c t i v e ,  w e  a r e  saying t h a t  

s o  t h a t  IB1,B2) seems t o  be  a n a t u r a l  coord ina te  system ( b a s i s )  


f o r  S(a1,a2).  


Again, wi th  r e s p e c t  t o  Exerc ise  3.2.1, observe t h a t  


which checks wi th  our  r e s u l t  i n  Exerc ise  3 .2 .2(d) .  


Notice a l s o  t h a t  w e  may use  t h e  augmented matr ix  technique t o  con- 


v e r t  from t h e  a ' s  t o  t h e  B's; namely, w e  may w r i t e  


from which w e  see t h a t  
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W e  s h a l l  con t inue  t o  r e i n f o r c e  t h i s  idea  i n  t h e  remaining e x e r c i s e s .  

3.2.3(L) 

a .  Using our  matr ix  coding system, w e  have 

From (1), w e  see t h a t  


SIa1,a2,a3) = S(BllB2,B3) 


where 
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3.2.3(L) continued 


Therefore, B1,B2,B3 belong to S(a1,a2,a3) and (xlfx2,x3,x4) E V 

belongs to 

b. From (2), 


Combining the results of (3) and (4) , we see that 

~x1,x2,x3~x4)E S(alfa2~a3I 

if and only if 


[As a check of (5), observe that (1,2,3,4), (2,5,7,7), and 


(3,7,8,9) each obey (5). Namely, with xl = 1, x2 = 2, x3 = 3, 

we have from (5) that x4 = 5 - 4 + 3 = 4; with x l =  2, x2 = 5, 

x3 = 7, we have x4 = 10 - 10 + 7 = 7; and with x 1 = 3, x2 = 7, 

x3 = 8, wehave x4 = 15 - 14 + 8 = 9.1 

At any rate, we have from (5) that 
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3.2.3 (L) continued 


Hence, in particular, 


. 	 Here we emphasize the salient feature of the vectors obtained by 
our row-reduced matrix technique. Namely, the very form of B1, 

62, and B3 guarantees that IB11f32,B3} is linearly independent. 

Namely, suppose 


Then 


Hence, 


Therefore, 


so that 


[and 5x1 - 2x2 + x3 = 01. 

Since xl = x2 = x3 = 0, we see from ( 6 )  that 1B11f32,B31 is lin- 

early independent. 


More generally, when we employ the row-reduced matrix idea to com- 

pute S(ul, . . ., un), we look at our final reduced matrix and 
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3 .2.3 (L) continued 


delete the rows which consist entirely of zeroes. The number of 

remaining rows will turn out to be the dimension of S(ul, ..., un). 
In particular, if we name the non-zero rows of the reduced matrix 

by v1 . . ., and vm (where m < n) then I 

and the set {vl, ..., v 1 is linearly independent. m 


3.2.4 (L) 


a. 	 To find the space spanned by {al,a2,a3,a4) where al = (1,2,3,4), 

a2 = (2,3,5,5), a3 = (2,4,7,6) and a4 = (-1,2,3,4), we row-reduce 

the matrix 

i1 2 3 


2 3 5 


7
: 	4 

2 3 

Namely, 
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From (3), w e  see t h a t  

s ( a l ,  a 2 ,  a3,  a4)  = S(B1,B2,B3, B 4 )  

where 

But t h e  0-vector i s  redundant i n  any spanning set. Namely, 

clal + cZaZ + c3a = clal + c2a2. etc. 

Hence, 

where B1, B 2 ,  and B 3  a r e  a s  i n  ( 4 ) .  

Consequently, 

That i s ,  f o r  (x1,x2,x3,x4) t o  belong t o  S(a1,a2,a3,a4) it i s  nec-

e s s a r y  and s u f f i c i e n t  t h a t  x4 = 5x2 - 2x3. Notice t h a t  a l ra2 ,a3 ,  

a 4  a l l  have t h i s  proper ty .  

-For example, wi th  ( 1 , 2 , 3 , 4 ) ,  x2 = 2, x3 = 3 whence 5x2 - 2x3 -
1 0 - 6 = 4 = x4 ' 
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3.2.4 (L) continued 


b. We now use the augmented matrix technique to see why {al,a2,a3,a4) 


spanned less than 4-dimensions. We have 


From (61, we may conclude at once that 


-and 
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3.2.4 (L) continued 


That is, 


In other words, we see from (7) how to express B1, B2, and B3 as 
linear combinations of al, a2, and a3. From equation ( 8 1 ,  we see 

that u4 is "redundant" in the sense that it is a linear cornbina- 

tion of al, a2 , and a3. 

Check 


= (2,3,5,5) + (2,4,7,6)
"2 + "3 

NOW, from ( 8 ) , 

Hence, for any real number c, (10) implies that 


3cal - 4ca2 + 2ca3 - ca4 = 0, 

Combining (9) and (ll), we have 


*Notice how we "pick off" this information simply by inspection. 
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Thus, from (12) ,  we see  t h a t  t he re  a r e  as  many ways of expressing 

(4,7,12,11) as  a l i nea r  combination of alr  a2 ,  a3, and a4 a s  t he re  

a r e  ways of choosing a value of c.  

In o ther  words, s ince  (a l ra2,a3,a41 i s  a l i n e a r l y  dependent set,  

every member of S(a1,a2,a3,a4) may be expressed a s  a l i nea r  com-

bina t ion  of air a2,  "31 and a4 i n  i n f i n i t e l y  many ways. 

-Note 

This exercise  is  a concrete i l l u s t r a t i o n  of a more general  r e s u l t ;  

namely, any f i n i t e  set of vectors  contains a l i nea r ly  independent 

subset  which generates (spans) the  same subspace. This l i n e a r l y  

independent subset  can always be obtained by our row-reduced 

matrix technique. 

a. Using our matrix code f o r  al, a2 ,  a3, a 4 ,  and as, we have 
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3.2.5 (L) continued 


From (3) , we see that S (al,a2 ,a3 ,a4 ,a5) is the same space as that 
spanned by B1 and B2 where B1 = (1,0,5) and B2 = (0,1,-1). [The 

last three rows of (3) all represent the 0-vector (0,O ,0) and this 

adds nothing to the space spanned by B1 and B2.1 

We next observe that 


From (4) , we see that each element (x1,x2 ,x3) E S(B1 ,B 2 )  can be 
expressed in one and only one way as a linear combination of B1 

and 	B2. In particular, 


Hence, 


dim S(a1,a2,a3,a4,a5) = dim S(BlIB2) = 2. 

b. 	Using the augmented matrix idea in which our last five columns de- 

note al, a2 , a3, a4, and a5, respectively, we have 
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3.2.5 (L) continued 

Hence, 

B1 = (1,0,5) = 7al - 2a3 

B2 = (0,1,-1) = -3a1 + a3 

and 

Note 
-+ 

Geometrical ly speaking,  i f  w e  view each 3-tuple a s  a v e c t o r  i n  i, 
f -+ -+ -+ -+ 
7, and k components o r i g i n a t i n g  a t  t h e  o r i g i n ,  then  i + 2 j  + 3k, 

-+ -+ -+ -+ -+ -+ -t 

21  + 4; + 6;, 3 1  + 7; + 8k,  i + 3 j  + 2k, and i - 2 j  + 7k a l l  l i e  
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i n  t h e  same plane .  This  p lane  i s  determined by t h e  p a i r  of vec-
-+ -+ -+ -b -b -+ -+ -+ 

t o r s  al  = i + 2 j  + 3k and a3  = 3 i  + 7j + 8k. It i s  a l s o  d e t e r -  
+- -+ -+ + + 

mined by t h e  p a i r  of v e c t o r s  B1 = i + 5k and e2  = - k.  
-+ -+ 	 -+ -b -+ 

I n  t e r m s  of B1- and B2-components, x i + x j + x k l i e s  i n  t h e  1 2 3 

p lane  -++ 


s o  j u s t  a s  i n  equat ion  ( 4 ) ,  w e  s e e  t h a t  t h e  equat ion  of t h e  p lane  

i s  

( o r  i n  more common n o t a t i o n ,  z = 5x - y ) .  

a .  	 I n  a manner of speaking,  t h i s  is  t h e  most important  r e s u l t  i n  t h e  

f i r s t  t h r e e  u n i t s .  What it says  i s  t h a t  i f  we have a set  of m 

l i n e a r l y  independent v e c t o r s  i n  V ,  then  no fewer than m vec to r s  

can span V. To make t h i s  a b i t  more concre te ,  we a r e  saying,  f o r  

example, t h a t  i f  v l ,  v 2 ,  v3, and v4 a l l  belong t o  a vec to r  space 

V ,  and i f  (v1,v2,v3,v4) i s  l i n e a r l y  independent,  then  no s e t  of 

t h r e e ,  o r  l e s s ,  elements i n  V can span V. A s  a s t i l l  more con-
t -? +c r e t e  i l l u s t r a t i o n ,  s i n c e  1, 1, and k a r e  l i n e a r l y  independent,  no 

fewer than t h r e e  v e c t o r s  can span xyz-space. 

Before we prove t h e  theorem, l e t  us exp la in  why t h e  r e s u l t  (assum-

i n g  i t s  t r u e )  i s  s o  important  i n  t h e  d i scuss ion  of t h e  dimension 

of a v e c t o r  space.  To begin  w i t h ,  l e t  us  n o t i c e  t h a t  t h e  con- 

s t r u c t i v e  techniques  used i n  t h e  l e c t u r e  seem t o  i n d i c a t e  t h a t  

t h e  answer might depend on how w e  choose our  vec to r s .  I n  o t h e r  

words, suppose w e  c a r r y  o u t  t h e  cons t ruc t ion  descr ibed i n  t h e  l ec -  

t u r e  and f i n d  two s e t s  of l i n e a r l y  independent v e c t o r s  t h a t  span 

V. How do we know t h a t  t h e s e  two sets have t h e  same number of 

elements? And i f  they  d o n ' t  have t h e  same number, then it i s  

ambiguous t o  d e f i n e  the dimension of a vec to r  space t o  be t h e  num-

b e r  of elements i n  a l i n e a r l y  independent s e t  which spans V. 
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3 . 2 . 6  (L) continued 

I f  t h e  theorem i s  t r u e ,  l e t  us  suppose t h a t  (ul ,  ..., u 1 i s  one r 
set of l i n e a r l y  independent v e c t o r s  which span V and t h a t  

(v l f  ..., vs} is  another  such set.  Then by t h e  theorem, s i n c e  

(ul ,  ..., ur) span V and Cvl, ..., v 1 i s  l i n e a r l y  independent,  
S 

r b s. Reversing t h e  r o l e s  of t h e  two sets w e  have t h a t  

(v l f  ..., vs l  span V and t h a t  (ul ,  ..., u 1 is  l i n e a r l y  indepen- r 

d e n t .  Hence, s b r. 


But s i n c e  r 3 s and s b r ,  it can only  b e  t h a t  r = s. I n  p a r t i c u -  

l a r ,  t h i s  proves t h a t  i f  {ul,  ..., u r l  i s  one set of l i n e a r l y  

independent v e c t o r s  which span V,  then  any o t h e r  set  of l i n e a r l y  

independent v e c t o r s  which span V must a l s o  have r elements. It 

can a l s o  be  shown i n  t h i s  case  t h a t  any set of r l i n e a r l y  indepen- 

d e n t  v e c t o r s  span V. (Namely, w e  can  express  t h e s e  r v e c t o r s  a s  

l i n e a r  combinations of ul ,  ..., u r ' etc.) 

W e  t hen  d e f i n e  a b a s i s  f o r  V t o  b e  any set of l i n e a r l y  independent 

v e c t o r s  which span V ,  whereupon w e  may then unambiguously d e f i n e  

t h e  dimension of  V t o  be  t h e  number of elements i n  any b a s i s  of V 

s i n c e  a l l  bases  have t h e  same number of elements. 

I n  o t h e r  words, when w e  say  t h a t  t h e  dimension of V is  r ( w r i t t e n  

dim V = r ) ,  w e  mean t h a t  t h e r e  e x i s t s  a set  of r l i n e a r l y  indepen- 

d e n t  v e c t o r s  which span V. I f  (ul ,  ..., ur1 i s  such a set, then 

w e  w r i t e  

o r  more simply,  

Returning t o  t h e  proof of t h e  theorem, w e  l e t  

C e r t a i n l y ,  S1 spans  V s i n c e  {a1, ..., an)  a l r eady  spans V and S1 

is l i n e a r l y  dependent s i n c e  B1 i s  a l i n e a r  combination of a l ,  ..., 
a . Hence, i n  t h e  o rde r  g iven by ( I ) ,a t  l e a s t  one of t h e  members n 
of S i s  a l i n e a r  combination of t h e  preceding ones. I t  c a n ' t  be  
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B1, s o  it must be  one of t h e  a ' s .  This  a can be d e l e t e d  from S1 

wi thout  changing t h e  space spanned by S1. Let  us d e l e t e  such an a 

and renumber t h e  remaining a ' s  t o  be a l ,  ..., "n-1' Thus, 

spans V a l s o .  

Now l e t  

Since  (BIIalI ..., an-1 I spans V ,  s o  a l s o  does S2 s i n c e  

{BIIalI . . . ,  a n- 1I c {B11B21a1, an-l I 

and s i n c e  B 2  i s  a l i n e a r  combination of B1,al, ... a n-1' w e  have 

t h a t  S2 i s  a l i n e a r l y  dependent s e t .  

Hence, i n  t h e  o r d e r  given i n  ( 2 ) ,  one of t h e  elements of S2 can be 

expressed a s  a l i n e a r  combination of t h e  preceding ones. But, 

s i n c e  t h e  6 ' s  a r e  l i n e a r l y  independent,  B 2  cannot be a s c a l a r  

m u l t i p l e  of B1; hence,  it must again be one of t h e  a ' s  which i s  

expendable. De le t ing  t h i s  a ,  l e t ' s  again renumber t h e  a ' s  and 

conclude t h a t  

a l s o  spans V. W e  now l e t  

and apply t h e  same argument a s  before .  Since S3 i s  l i n e a r l y  de- 

pendent , the  B's a r e  l i n e a r l y  independent it must be one of t h e  a ' s  

which i s  redundant.  Continuing induc t ive ly  i n  t h i s  manner, each 

t ime we t ack  on a 8 ,  we must be a b l e  t o  d e l e t e  an a. I n  p a r t i c u -  

l a r .  t hen ,  t h e r e  a r e  a t  l e a s t  a s  many a ' s  a s  t h e r e  a r e  B's. 
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A s  a f i n a l  no te  t o  t h i s  p a r t  of t h e  e x e r c i s e ,  l e t  us observe t h a t  

t h e  procedure o u t l i n e d  h e r e  t e l l s  us  how t o  augment any set of 

l i n e a r l y  independent v e c t o r s  i n t o  a b a s i s .  Namely, we use  t h e  

procedure o u t l i n e d  i n  our  proof-whereby w e  l i s t  one of our  inde-

pendent v e c t o r s  followed by a set of spanning v e c t o r s  and then 

us ing  some computat ional  technique  such a s  row-reducing mat r i ces ,  

w e  f i n d  t h a t  one of t h e  spanning v e c t o r s  can be  de le ted .  W e  then  

augment our  set  of v e c t o r s  by l i s t i n g  t h e  next  member of t h e  l i n -  

e a r l y  independent s e t  and f i n d i n g  another  of t h e  spanning v e c t o r s  

t o  d e l e t e .  W e  cont inue  i n  t h i s  way u n t i l  t h e  l a s t  member of t h e  

l i n e a r l y  independent s e t  is  added and w e  may then use  t h e  row-

reduced technique  t o  prune o u t  t h e  remaining redundancies. What 

w e  a r e  then l e f t  wi th  is  a b a s i s  which inc ludes  t h e  o r i g i n a l l y  

given set of l i n e a r l y  independent v e c t o r s .  

This  technique  w i l l  be employed i n  more concre te  form i n  t h e  f o l -  

lowing u n i t s  of t h i s  b lock,  b u t  f o r  now, w e  c l o s e  wi th  t h e  example 

given i n  (6) . 
. 	 The main aim h e r e  i s  t o  add concre teness  t o  p a r t  ( a )  and a t  t h e  

same t i m e ,  t o  show one way of  augmenting a set of l i n e a r l y  inde- 

pendent v e c t o r s  t o  form a b a s i s .  What we do is  augment (a1,a2,a3}, 

one a t  a t i m e  by u1,u2,u3, etc. ,  u n t i l  w e  have a b a s i s  f o r  

E5. Thus, w e  begin  by row-reducing 

t o  make s u r e  t h a t  {a l ,a2 ,a3)  is  l i n e a r l y  independent.  This  l e a d s  

t o  

s o  t h a t  {a1,a2,a31 is  l i n e a r l y  independent.  

From ( 1 1 ,  w e  see t h a t  S(a1,a2,a3) = S(B1,B2,B3) where 

8, = ( 1 , o , o , - 1 , - 1 1 ,  B~ = ( 0 , 1 , 0 , 3 , 0 ) ,  B 3  = (0 ,0 ,1 , -1 ,2) .  W e  
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augment S(a1,a2,a3) [= S(B1rB2,B3)1 by u1 to obtain 

From (21, we see that S(al,a2,a3,u1) is a 4-dimensional, so we 


next look at S(a1,a2,a3,u1,u2) by row-reducing 


We see from ( 3 )  that E~ = S(al,a2 ,a3,ul ,u2). Had u 2 been a linear 

combination of al,a2,a3, and u1 ' we would have deleted it and used 
row-reduction on S(alra2,a3,u1,u3) etc., until we wound up with 

the five elements which span V. 
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3 .2 .7  c o n t i n u e d  

From ( 1 1 ,  we see t h a t  S(a1,a2,a3)  = S(B1,B2,B3) where  

5 5 4B L  = ( 1 , 0 , 0 , g ) ,  B 2  = ( 0 , 1 , 0 , g ) ,  and B3 = ( 0 , 0 , 1 , 7 ) .  

Moreover,  

Hence, 
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b. 	 The dimension of W = S(a l , a2 ,a3 )  = 3 .  Any t h r e e  l i n e a r l y  inde-

pendent members of W span W and converse ly  any set of t h r e e  ele-

ments of W which span W a r e  l i n e a r l y  independent.  The " n a t u r a l "  

b a s i s  f o r  W i s  (f31,f32ff33~ ( x ~ ~ x ~ ~ x ~ , x ~ )W *s i n c e  	 E 

From (1), w e  conclude t h a t  

and 
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Hence, 


a3 = 7al + 6a2 - 4a4. 

[Of course, if we so desire, we may use (3) to obtain 


From (4') and (2), we could express (1,0,0), (0,1,0), and (0,0,1) 


as linear combinations of al, a2, and a3. Equation (4') is more 


conventional in the sense that for linear dependence, we like to 


express a vector as a linear combination of its predecessors.] 


3.2.9 (L) 


The main aim of this exercise is to illustrate the existence of an 


infinite-dimensional vector space. First of all, since every 


polynomial is continuous and since the set of all continuous func- 


tions is a vector space (with respect to the usual meanings of the 


sum of two functions and the product of a scalar and a function), 


we know that the set of all polynomials is at least a sub& of 


the space of continuous functions. To prove that this subset is a 


subspace, we need only know that the sum of two members of this 


subset belongs to the subset as does any scalar multiple of a mem- 


ber of the subset. 


Clearly, the sum of two polynomials is a polynomial and a scalar 


multiple of a polynomial is also a polynomial. Therefore, the set 


of all polynomials is itself a vector space. But we know from our 


treatment of elementary calculus that the powers of x are linearly 
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independent.  That i s ,  x 	n cannot  be  expressed a s  a l i n e a r  combina- 
n- 1t i o n  of 1, x ,  ..., and x . 

I n  o t h e r  words, f o r  any va lue  of n no mat t e r  how l a r g e  

(1 ,  x ,  ..., xn)  is a l i n e a r l y  independent set .  Y e t ,  t h e  space 

spanned by ( 1 ,  x ,  ..., x 
n ?I can never y i e l d  t h e  e n t i r e  space P 

s i n c e  x E P b u t  xn+l  S ( 1 ,  x ,  ..., x n ) .  

n-1Hence, i n  t h e  language of today ' s  l e c t u r e  wi th  an = x , w e  s e e  

t h a t  f o r  each n 

b u t  f o r  no n w i l l  S ( a l ,  ..., an ) y i e l d  a l l  of our  v e c t o r  space. 

That i s ,  t h e  c o n s t r u c t i v e  dev ice  descr ibed a t  t h e  end of t h e  l ec -  

t u r e  never t e rmina tes  and accord ing ly ,  w e  r e f e r  t o  t h e  space of 

a l l  polynomials i n  x a s  an in f in i t e -d imens iona l  vec to r  space. 

A s  a f i n a l  n o t e  t o  t h i s  e x e r c i s e ,  r e c a l l  t h a t  s i n c e  every a n a l y t i c  

f u n c t i o n  may b e  rep resen ted  a s  a power s e r i e s ,  the space spanned 

by t h e  f i n i t e  set (1 ,  x ,  x 2 , ..., x n , . . . I  i s  t h e  space of a l l  

a n a l y t i c  func t ions .  
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