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Study Guide 
Block 2:  Ordinary D i f f e r en t i a l  Equations 

P r e t e s t  

1. a. Find the  f i r s t  order  d i f f e r e n t i a l  equation ( i n  which c does 

not  appear) s a t i s f i e d  by each hyperbola of t he  family y = -
C - where 

X 
c i s  an a r b i t r a r y  constant  and x # c.  

b. Find a l i n e  which s a t i s f i e s  t he  same d i f f e r e n t i a l  equation found 

i n  p a r t  ( a ) .  

2. Find t h e  general  so lu t ion  of 

3. Express, i n  po la r  form, the  family of curves which has t he  property 

t h a t  each member of t h i s  family i n t e r s e c t s  each l i n e  y = mx a t  a 45O 

angle. 

4. Find t h e  general  so lu t ion  of 

5. Find t h e  general  so lu t ion  of 

yw - 6y1 + 9y = 3e4X + s i n  3x. 

1 

6. Find a p a r t i c u l a r  so lu t ion  of yn  - y = -- 

1 + ex' 

7. Use power s e r i e s  t o  f i nd  t h e  p a r t i c u l a r  so lu t ion ,  y = £ ( X I ,  of t h e  

equation y" - xy = 0 i f  f (0) = 0 and f ' ( 0 )  = 1. 

8. Find the  so lu t i on  of t he  system: 

d x - y = e  taF 

* +  x =  s i n  td t  

sub jec t  t o  t he  i n i t i a l  condit ions t h a t  x (0 )  = 1 and y(0)  = 0. 

2. ii 
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Unit 1: The Concept of a General So lu t ion  

1. 	 Overview 

I n  a way, d i f f e r e n t i a l  equat ions  a r e  t h e  inver se  of d i f f e r e n t i a l  

ca lcu lus .  I n  d i f f e r e n t i a l  ca lcu lus  w e  s t a r t e d  wi th  a given re-

l a t i o n s h i p  between x and y and then found how t h e  var ious  d e r i -  

v a t i v e s  of y wi th  r e s p e c t  t o  x were r e l a t e d ,  I n  d i f f e r e n t i a l  

equat ions ,  w e  s t a r t  wi th  a r e l a t i o n s h i p  between t h e  func t ion  and 

i t s  var ious  d e r i v a t i v e s ,  from which we t r y  t o  deduce what t h e  

func t ion  was. The problem i s  t h a t  some d i f f e r e n t i a l  equat ions  

have no s o l u t i o n s  whi le  o t h e r s  have " too  many" so lu t ions .  I n  

t h i s  u n i t  it i s  o u r  aim t o  make it c l e a r  a s  t o  j u s t  what i s  meant 

by a s o l u t i o n  of a d i f f e r e n t i a l  equation.  I n  t h e  nex t  u n i t  w e  

s h a l l  show how t o  so lve  c e r t a i n  types  of d i f f e r e n t i a l  equat ions ;  

and i n  Unit  3 we s h a l l  t r y  t o  show how d i f f e r e n t i a l  equat ions  

occur i n  "nature" .  

2. 	 Do Exerc ises  2.1.1, 2.1.2 and 2.1.3. The l e c t u r e  d e a l s  wi th  

t h e  concept of a genera l  s o l u t i o n  t o  a  d i f f e r e n t i a l  equation.  

While t h e  l e c t u r e  i s  se l f -conta ined,  t h e r e  is  a c e r t a i n  amount 

of experience o r  " s o p h i s t i c a t i o n "  t h a t  i s  requi red  on t h e  p a r t  of 

the  s t u d e n t  i f  t h e  not ion  of genera l  s o l u t i o n  i s  t o  be a s  meaning- 

f u l  a s  p o s s i b l e .  It i s  f o r  t h i s  reason t h a t  you a r e  asked t o  do 

these  t h r e e  problems before  viewing t h e  l e c t u r e .  You may a l s o  

wish t o  review t h e s e  t h r e e  e x e r c i s e s  a f t e r  viewing t h e  l e c t u r e  

be fo re  t a c k l i n g  t h e  remaining e x e r c i s e s  i n  t h i s  Unit.  
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Unit  1: The Concept of  a General Solut ion  

3 .  Lecture 2.010 
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Unit  1: The Concept of a General Solut ion  

Lecture 2.010 continued 

4 .  Read: Thomas, Sect ions  20.1 and 20.2. The main r o l e  of t h e s e  twg 

s e c t i o n s  i s  t o  he lp  you e s t a b l i s h  t h e  b a s i c  vocabulary t h a t  i s  ~2 9.:

I 

used i n  t h e  of d i f f e r e n t i a l  equat ions .  ,. ;i:'.) study 
.*a Y .  

5. Exerc ises :  

Find t h e  f i r s t  o rde r  d i f f e r e n t i a l  equat ion  which i s  s a t i s f i e d  by 

each member of t h e  family,  y = x2 + c ,  where c i s  an a r b i t r a r y  

cons tan t .  

Find t h e  f i r s t  o rde r  d i f f e r e n t i a l  equat ion  which i s  s a t i s f i e d  by 
I 

each hyperbola of the  family y = ( X  # C )  where c i s  an 

a r b i t r a r y  cons tan t .  Show t h a t  t h e  d i f f e r e n t i a l  equation can be 

s a t i s f i e d  by a curve which does n o t  belong t o  t h e  given family 

of hyperbolas.  

2.1.3 (L) 


Find t h e  f i r s t  o rde r  d i f f e r e n t i a l  equation s a t i s f i e d  by the  family 


of c i r c l e s  (x  - 2 c ) + y2 = 1, and show t h a t  t h i s  d i f f e r e n t i a l  


equat ion  i s  a l s o  s a t i s f i e d  by t h e  l i n e s  y  = +_ 1. 


. 
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2.1.4(L) 


2
Consider t h e  d i f f e r e n t i a l  equat ion  2 = x y. 

a.  	 Find a 1-parameter family of curves which s a t i s f i e s  t h i s  d i f f e r e n -  

t i a l  equation.  

b. 	 Can t h e  given equat ion  have s o l u t i o n s  which do n o t  belong t o  t h e  

family found i n  ( a ) ?  Explain. 

c .  	 Find a l l  s o l u t i o n s  of t h e  given equat ion  which pass  through a 

given p o i n t  (xo,yo) i n  t h e  plane.  

2.1.5(L) 

The equat ion  $ = 3y2'3 i s  def ined a t  a l l  p o i n t s  (xoly,) i n  some 

region R. ~ e s c r i b eR i f  it i s  known t h a t  t h e r e  i s  one and only 

one s o l u t i o n  of  t h e  equat ion  t h a t  passes  through a given p o i n t  

(xoI yo ) E R ,  and desc r ibe  t h e  s o l u t i o n .  

2.1.6 

Consider t h e  d i f f e r e n t i a l  equat ion  x 2 - 3y = 0.  

a .  	 Describe t h e  most genera l  (connected) region R f o r  which the  

given equat ion  has  a genera l  s o l u t i o n .  

b. 	 W i t h  R a s  i n  ( a ) ,  f i n d  t h e  s o l u t i o n  of t h e  given equat ion  which 

passes  through (xo, yo) ER. 

c.  	 I n  p a r t i c u l a r ,  f i n d  t h e  s o l u t i o n  which passes  through (1,l). 

2.1.7(L) 

Given a 1-parameter family of curves ,  y def ined by y = f ( x , c ) ,  

E i s  c a l l e d  an envelope of t h e  family y i f  and only i f  f o r  each 

p o i n t  (xo,yo) on El E i s  tangent  t o  a t  l e a s t  one member of y a t  

(continued on nex t  page) 
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2.1.7 (L) continued 

(xo,y0). I f  y has an envelope it i s  found by s o l v i n g  t h e  system 

of equa t ions  

and e l i m i n a t i n g  c.  

a. 	 Find t h e  envelope of t h e  fami ly  y = cx - 2c . 
2 b. 	 Find t h e  envelope of  t h e  family (x  - c ) + y2 = 1. 

The f i n a l  two e x e r c i s e s  a r e  op t iona l .  While they a r e  n o t  p a r t i -  

c u l a r l y  d i f f i c u l t ,  they  d e a l  wi th  t h e  concept  of  envelopes; 

and t h i s  concept  i s  n o t  v i t a l  t o  t h e  m a t e r i a l  which fol lows.  

Never theless ,  i f  you have t h e  t i m e  it i s  worthwhile t o  o b t a i n  

t h e  a d d i t i o n a l  exper ience  i n  working wi th  envelopes. Moreover, 

Exerc i se  2.1.9 o u t l i n e s  t h e  procedure f o r  so lv ing  C l a i r a u t ' s  

equat ion  i n  genera l .  

2.1.8 ( o p t i o n a l )  

a .  	 Find t h e  d i f f e r e n t i a l  equat ion  which i s  s a t i s f i e d .  by t h e  1-
2 parameter  fami ly  of  c i r c l e s  (x  - c) + y2 = 4 c  + 4 .  

b. 	 Describe t h e  r eg ion  R i n  which t h e  d i f f e r e n t i a l  equat ion  of 

p a r t  ( a )  has a s o l u t i o n .  

c. 	 Find t h e  members of ,*the family  i n  ( a )  which pass  through ( 3 , 4 ) .  

Explain why two d i f f e r e n t  members of t h i s  family pass  through (3 ,4)  

and s a t i s f y  t h e  same d i f f e r e n t i a l  equation.  

d.  	 Find t h e  envelope of t h e  fami ly  o f  curves i n  ( a )  and show t h a t  

t h e  envelope s a t i s f i e s  t h e  same d i f f e r e n t i a l  equat ion  a s  does t h e  

g iven family  of circles. 
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2.1.9 ( o p t i o n a l )  

a .  	 Find a 1-parameter family 

Equation y  = x - (g)
of l i n e s  which s a t i s f y  t h e  C l a i r a u t  

4 .  

b.  	 Find t h e  envelope of t h e  fami ly  of s t r a i g h t  l i n e s  de f ined  i n  ( a ) .  

. 	U s e  t h e  r e s u l t  of  (b)  t o  f i n d  another  s o l u t i o n s  of t h e  C l a i r a u t  


Equation of p a r t  ( a ) .  


1. 	 Graph t h e  envelope of  p a r t  (b)  and e x p l a i n  how it is  r e l a t e d  


t o  t h e  fami ly  o f  l i n e s  i n  p a r t  ( a ) .  


e. 	 Solve t h e  C l a i r a u t  Equation of p a r t  ( a )  d i r e c t l y  by d i f f e r e n t i a -  

t i n g  t h e  equat ion  wi th  r e s p e c t  t o  x and l e t t i n g  u denote $ . 
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Uni t  2: s p e c i a l  Types of F i r s t  Order Equations 

1. 	 Overview 

I n  many r e s p e c t s ,  a t  l e a s t  from an eng inee r ' s  p o i n t  of view, 

d i f f e r e n t i a l  equa t ions  i s  viewed a s  a "cookbook" course.  The 

main reason f o r  t h i s  i s  t h a t  once t h e  genera l  theory  concerning 

t h e  e x i s t e n c e  of s o l u t i o n s  of d i f f e r e n t i a l  equat ions  i s  e s t a b l i s h e d ,  

w e  must then t u r n  our  a t t e n t i o n  t o  t h e  " n i t t y - g r i t t y "  of f ind ing  

t h e s e  s o l u t i o n s .  

Our aim i n  t h i s  u n i t  i s  t o  h e l p  you l e a r n  a few d i f f e r e n t  tech- 

niques.  S ince  each e x e r c i s e  i l l u s t r a t e s  a d i f f e r e n t  technique,  

w e  have decided t o  view each e x e r c i s e  i n  t h i s  u n i t  a s  a l e a r n i n g  

e x e r c i s e .  

A s  i n d i c a t e d  a t  t h e  end of Lecture  2.010, our  approach i s  t o  

test f i r s t  f o r  exac tness ,  then t o  look f o r  i n t e g r a t i n g  f a c t o r s  

and then t o  look f o r  v a r i o u s  o t h e r  techniques .  Our approach 

does n o t  fo l low q u i t e  t h e  same o r d e r  a s  t h e  reading m a t e r i a l  

i n  t h e  t e x t .  Consequently, w e  sugges t  t h e  fol lowing approach. 

\
2. 	 Read ( f a i r l y  quickly)  t h e  fo l lowing s e c t i o n s  of t h e  Thomas t e x t :  

20.3, 20.4, 20.5, 20.6, and 20.7. 

3. 	 Then, re-read t h e s e  s e c t i o n s  i n  more d e t a i l  a f t e r  t h e  appropr ia t e  

l e a r n i n g  e x e r c i s e .  More s p e c i f i c a l l y ,  where appropr ia t e ,  each 

e x e r c i s e  w i l l  t e l l  t h e  s e c t i o n  of  t h e  t e x t  from which t h e  

e x e r c i s e  is  drawn. A f t e r  so lv ing  t h e  e x e r c i s e ,  read t h e  appro- 

p r i a t e  s e c t i o n  of t h e  t e x t ,  p r a c t i c i n g  on s e v e r a l  of t h e  e x e r c i s e s  

g iven t h e r e .  There is  no s u b s t i t u t e  f o r  exper ience  i n  l e a r n i n g  

how t o  s o l v e  d i f f e r e n t i a l  equat ions .  
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4. 	 Exercises: 

2.2.1 (L) [Section 20.61 


Find the  general  so lu t ion  of 


2.2.2 (L) [Section 20.31 


Find the  general  so lu t ion  of 


2.2.3 (L) [Section 20.41 


Find t h e  general  so lu t ion  of 


i n  the region R f o r  which x > 0, 

2-2.4 taptianal) 

This exerc i se  is opt iona l  only because it is  not ' exac t ly  of a 

type solved i n  the reading mater ia l .  Eforwever, it is a s l i g h t  

refinement of the  homogeneous equation discussed i n  Section 

20-4 and is worth t ry ing  i f  only t o  show you how even i n  "cookbook" 

s i t u a t i o n s  some ingenuity is helpful .  

a-	 Assuming t h a t  alb2 - a2bl # 0 ,  f i nd  an appropria te  subs t i t u t ion  
of the form 

h and k su i t ab ly  a r e  chosen constants 

which reduces 

(continued m next page) 

2.2.2 
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2.2.4 continued 


t o  an equation of t h e  form 


b. 	 Given t h a t  

g=2* 2x + 2 

i n  any connected region R which excludes any por t ion of the  

l i n e  y = 3x - 9 ,  f i nd  t h e  general  so lu t ion  of the  equation. 

c. 	 Solve the  equation 

(2x + 3y + 4)dx - (4x + 6y + 1)dy = 0. 

d. 	 Find the  p a r t i c u l a r  so lu t i on  of t he  equation i n  p a r t  (c)  

which passes through (-2 , l )  . 

2 .2.5 	(L) [Section 20.51 

a .  	 Show t h a t  we can f i nd  an i n t eg ra t i ng  f a c t o r  u (x) [ i  .e .  , an 

in t eg ra t i ng  f a c t o r  t h a t  i s  independent of yl i f  Mdx f Ndy = 0 

i s  no t  exac t  bu t  % - Nx/N i s  a function of only x (not y ) .  

Find u (x) e x p l i c i t l y  i n  t h i s  case. 

b. 	 Apply t he  method of part (a) t o  solve 

(y - xex)dx - xdy = 0. 

c .  	 U s e  t he  method of p a r t  (a )  t o  solve 

g+P ( x ) y  = Q(x)  


where P and Q a r e  continuous functions of x. 


d. solve the  equation - 5 = x5 ( X  > 0). 

2.2.3 
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2.2.6 (L) [Section 20.51 

a. Show t h a t  there  i s  one and only one so lu t ion  of dy/dx + p ( x ) y  = 

g(x )  through any given po in t  (xo,yo) i n  t he  plane provided only 

t h a t  p (x )  and g (x )  a r e  continuous functions of x. 

b. 	 Show t h a t  the  1-parameter family, y = f (x) i- c g (x )  [where f and 

g a r e  given d i f f e r e n t i a b l e  funct ions  of x, and c i s  an a r b i t r a r y  

constant]  i s  always a so lu t ion  of a f i r s t  order l i n e a r  d i f fe ren-  

t i a l  equation. 

c .  	 Find the  general  so lu t ion  of 

d. 	 The equation dy/dx + y/x = x3y4 i s  ca l l ed  a Bernoull i  equation. 

Show t h a t  multiplying both s ide s  of t h i s  equation by y-4 converts 

the  equation i n t o  one which i s  l i nea r .  Then, solve the  o r i g i n a l  

equation. 

2.2.7 (opt ional)  

The following exerc i se  involves a g r e a t  dea l  of computational 

manipulation and a review of severa l  ideas  already discussed i n  

t h i s  Block. Aside from t h i s ,  the  exerc i se ,  j u s t  a s  Exercise 

2 .2 .4 ,  t r i e s  t o  show how even a f t e r  we know a few techniques we 

must o f ten  s t i l l  r e s o r t  t o  well-calculated guesses. Skipping 

t h i s  exerc i se  does you no se r ious  harm i n  the  mater ia l  which 

follows, except it is  probably a good case t o  gain experience i n  

handling "messy" s i t u a t i o n s .  

Find a l l  so lu t ions  of the  equation 



Study Guide 
Block 2 :  Ordinary D i f f e r en t i a l  Equations 
Unit 2:  Special  Types of F i r s t  0rder .Equat ions  

2.2.6 (L) [Section 20.71 

a.  	 Find a curve which passes through (1, 3/2) with s lope equal t o  1 

and which s a t i s f i e s  t he  equation 

b. 	 Find a so lu t ion  of t he  equation 

which has t he  property t h a t  when x = 0 ,  y = 2 and y' = 4.  [I .e.  

f i nd  a curve which passes through (0,2) with s lope 4 ,  s a t i s fy ing  

t h e  given equation.] 
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Unit 3: ' (optional)  Some Geometric Applications of F i r s t  Order Equations 

1. Overview 

A s  you have probably long ago concluded, t h i s  course t in  i t s e l f ,  i s  

not  designed from a p r a c t i c a l  appl icat ion po in t  of view. Never-

the l e s s ,  t he re  a r e  c e r t a i n  top ics  t h a t  occupy a very important 

r o l e  i n  appl ica t ions ,  and d i f f e r e n t i a l  equations i s  one of the  

most important of these  topics .  Indeed, it has been sa id  t h a t  

t he  r e a l  world was wr i t t en  i n  t he  language of d i f f e r e n t i a l  

equations.  

A t  any r a t e ,  f o r  the  s tudent  who does not ca re  about appl icat ions  

t h i s  u n i t  may be omitted without any l o s s  of cont inui ty .  Even 

worse, f o r  t he  s tudent  who does care  about appl ica t ions ,  t h i s  

u n i t  may a l s o  be omitted. The reason i s  t h a t  the  types of 

app l ica t ions  of d i f f e r e n t i a l  equations and the  sophis t ica t ion  

needed i n  der iving t h e  equation a r e  o f ten  of a very spec ia l ized  

nature.  What i s  p r a c t i c a l  t o  one s tudent  may be impract ical  

( o r  p r a c t i c a l  but  beyond the  realm) of another s tudent .  

For t h i s  reason w e  have adopted the a t t i t u d e  t h a t  the  r o l e  of a 

mathematics course,  a t  l e a s t  a t  t h i s  l e v e l ,  i s  t o  teach the  

s tudent  t he  necessary mathematics; and it i s  the  r o l e  of h i s  f i e l d  

of i n t e r e s t  t o  supply t he  equations t o  which t he  mathematical 

knowledge w i l l  be pu t  t o  use. 

A s  a compromise, w e  have used the  r a t i ona l i za t i on  t h a t  every 

f i r s t  order  equation has a geometric i n t e rp re t a t i on  (s ince i n  

the  expression,  say,  dy/dx, we have no way of deciding a p r i o r i  

what physical  q u a n t i t i e s  a r e  named by x and y ) .  Consequently, 

whatever appl ica t ions  we make i n  t h i s  u n i t  (except f o r  two 

op t iona l  exerc i ses  a t  the  end of the  exerc i ses )  a r e  r e s t r i c t e d  

t o  geometry. 

For t he  s tudent  who i s  in t e r e s t ed  i n  applying d i f f e r e n t i a l  

equations t o  h i s  o ther  work, we s t rongly recommend t h a t  he do 


t h i s  un i t .  Otherwise, we must admit t h a t  t h i s  u n i t  does - -


nothing more than re inforce  t he  computations done i n  the  


previous un i t s .  For t h i s  reason, the  s tudent  who would l i k e  a 
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b i t  more experience before tack l ing  higher order  d i f f e r e n t i a l  

equations might p r e f e r  t o  t r y  the  exerc i ses  i n  t h i s  un i t .  

2. 	 Exercises : 

2.3.1(L) 

a.  Find the  family of orthogonal t r a j e c t o r i e s  t o  t he  family of 

curves y x + ~ e - ~ ,  c i s  an a r b i t r a r y  constant.  = where 

b. 	 Find the  member of y = x + ce-X and the  member of t he  family of 

orthogonal t r a j e c t o r i e s  which pass through ( 0 , 4 ) .  

c. 	 Do the  same a s  i n  p a r t  ( b ) ,  only now l e t  t he  members pass 

through (0 ,1). 

2.3.2 

Find the  orthogonal t r a j e c t o r i e s  of t he  family of parabolas,  

y2 = CX. where c is  an a r b i t r a r y  constant.  

2.3.3(L) 

Find the  family of curves which i n t e r s e c t s  every l i n e  of the  

form y = mx a t  a 45O angle. 

2 . 3 . 4  

Find the  family of curves with the  following property. A t  each 

po in t  P on t he  curve the  angle made by the  l i n e  tangent t o  the  

curve a t  P and the  pos i t i ve  x-axis i s  twice the  angle made 

up of t he  pos i t i ve  x-axis and the  l i n e  OP where 0 is  the  o r i g i n  

of t h e  coordinate plane. 
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A curve has  t h e  p roper ty  t h a t  it passes  through ( 0 ,  3/16) and 
i t s  	s l o p e  a t  each p o i n t  P (x ,y)  i s  given by 

Find t h e  equat ion  of t h i s  curve. 

2.3.6 (L) 

Find a l l  curves  wi th  t h e  fo l lowing proper ty .  The segment of t h e  

l i n e  t angen t  t o  t h e  curve a t  PI  between P and t h e  x-axis ,  is  

b i s e c t e d  by t h e  y-axis .  

2.3.7 

a .  	 Give t h e  equat ion  f o r  t h e  family of  curves  wi th  the  p roper ty  

t h a t  a t  each p o i n t  P (x ,y )  on any such curve t h e  s lope  of t h e  

curve a t  P i s  equa l  t o  t h e  y - i n t e r c e p t  of t h e  l i n e  tangent  t o  

t h e  curve a t  P. 

b. 	 What members of  t h i s  fami ly  pass  through ( 2 , 9 ) ?  

The nex t  two problems a r e  o p t i o n a l  and stress phys ica l  s i t u a t i o n s  

which may be t r a n s l a t e d  geometr ica l ly .  

2.3.8 ( o p t i o n a l )  

A p lane  mi r ro r  has  t h e  p roper ty  t h a t  i f  any l i g h t  ray  from a 

p o i n t  source  0 ( t h e  o r i g i n )  s t r i k e s  t h e  mi r ro r  a t  any p o i n t  

P (x ,y)  t h e  l i g h t  is  r e f l e c t e d  p a r a l l e l  t o  t h e  x-axis.  Find 

t h e  equa t ion  of t h e  mi r ro r .  

2 .3.9 ( o p t i o n a l )  

A boa t  A moves along t h e  y-axis  wi th  a cons tan t  speed of amph.  

A m i s s i l e  B moves i n  t h e  r i g h t  h a l f  of  t h e  xy-plane wi th  a 

c o n s t a n t  speed of -b mph i n  such a way t h a t  B is  always pointed  

d i r e c t l y  toward A. Find t h e  equat ion  of t h e  pa th  followed by B. 
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