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LECTURE 11 Solution of dynamic response by mode
superposition

The basic idea of mode superposition

Derivation of decoupled equations

Solution with and without damping

Caughey and Rayleigh damping

Calculation of damping matrix for given
damping ratios

Selection of number of modal coordinates

Errors and use of static correction

Practical considerations

TEXTBOOK: Sections: 9.3.1. 9.3.2. 9.3.3

Examples: 9.6. 9.7. 9.8. 9.9. 9.10. 9.11
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Mode Superposition Analysis

Basic idea is:

transform dynamic equilibrium

equations into a more effective
form for solution,

using

!L = 1:. !(t)
nxl nxn nxl

P = transformation matrix

! (t ) =general ized displacements

Using

!L(t) = 1:. !(t)

on

MU+ c 0 + K U = R

we obtain

(9.30)

(9.1)

~ R(t) + f i(t) + R!(t) ~(t)

(9.31)
where

C fT ~ f ;

R = PT R (9.32)
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(9.34)
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An effective transformation matrix f
is established using the displacement
solutions of the free vibration equili
brium equations with damping
neglected,

M 0 + K U = 0

Using

we obtain the generalized eigenproblem,

(9.36)

with the n eigensolutions (w~, p..,) ,
2 2

( ul2 ' ~) , ... , (wn ' .P.n) , and
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T 1== 0'<P 1" M'" "- _.:t:..J

i = j

i ., j

2
< W- n

(9.37)

(9.38)
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Defining

(9.39)
we can write

and have

(9.40)

Now using

!L(t) = ! ~Jt)

¢T M¢ = I (9.41)

(9.42)

we obtain equilibrium equations
that correspond to the modal
generalized displacements

!(t) + !T ~! !(t) + r;i ~(t) = !T !S.(t)

(9.43)

The initial conditions on ~(t) are
obtained using (9.42) and the
M - orthonormality of ¢; i.e.,
at time 0 we have

(9.44)
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Analysis with Damping Neglected

(9.45)

i.e., n individual equations of
the form

2.x .(t) + w. x. (t) = r. (t )1 1 1 1

where

with

T aX'I = lj). M U1 -1 - -t=O

• .T O'X'I =-'-- cp.M U1 -1 - -t=O

i = ',2, ... ,n

(9.46)

(9.47)

Using the Duhamel integral we have

=-' jtr1·(T) sinw.(t-T)dTw. 1

1 0 (9.48)

+ a.. sin w.t + 8. cos w·t111 1

where a.i and 8i are determined

from the initial conditions in (9.47).

And then

11-&
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Fig. 9.4. The dynamic load factor

Hence we use

uP =~¢. x· (t)
-- ~--l 1

i =1

where

uP - U

The error can be measured using

(9.50)
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Static correction

Assume that we used p
modes to obtain ~p , then let

n

~_=LriUl~)
i =1

Hence

Tr. = ¢. R
1 -1-

Then

and

K flU fiR

Analysis with Damping Included

Recall, we have

!(t) + !T f!i(t) + fi !(t) = !T ~(t)

(9.43)

If the damping is proportional

T¢. C (po = 2w. E;,. cS. .
-1 ---J 1 1 1J

and we have

(9.51)

x.(t) + 2w. E;,. x.(t) + w~ x.(t) = r
1
·(t)

1 1 1 1 1 1

i=l, ... ,n

(9.52)
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A damping matrix that satisfies the
relation in (9.51) is obtained using
the Caughey series,

(9.56)

where the coefficients ak ' k = , , ••• , p ,
are calculated from the p simultane-
ous equations

A special case is Rayleigh damping,

C = a ~1 + B K- -- --

example:

Assume ~, = 0.02

w, = 2

calculate a and B

We use

(9.55)

or

'/
a + Bw:- 2w. ~.
- - 1 1 1

2w. ~.
1 1
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Using this relation for wl ' [,1 and
w2 ' [,2 ' we obtain two equations

for a and 13:

a + 4ii = 0.08

a + 913 = 0.60

The solution is a = -0.336
and 13 = O. 104 . Thus the
damping matrix to be used is

C = -0.336 M + 0.104 K

Note that since

2a + 13 w. = 2w. [, .
1 1 1

for any i, we have, once a and
13 have been established,

E,. =
1

2
a + SW.

1

2w.
1

a 13= - + - w
2w. 2 i

1
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Response solution

As in the case of no damping.
we solve P equations

x. + 2w. E,. x· + w~ x. = r.
1 111111

with

r·
1

I
TO

xi t = 0 "--. !i!i .!:L

• ITO'
xi t = 0 = !i f1 .!:L

and then

P
uP ~¢. x. (t)LJ-1 1

i =1

Practical considerations

mode superposition analysis
is effective

- when the response lies in a
few modes only, P« n

- when the response is to be
obtained over many time in
tervals (or the modal response
can be obtained in closed form).

e.g. earthquake engineering
vibration excitation

- it may be important to
calculate E p(t) or the
static correction.
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