# SOLUTION METHODS FOR CALCULATIONS OF FREQUENCIES AND MODE SHAPES 

LECTURE 12
58 MINUTES

LECTURE 12 Solution methods for finite element eigenproblems

Standard and generalized eigenproblems
Basic concepts of vector iteration methods, polynomial iteration techniques, Sturm sequence methods, transformation methods

Large eigenproblems
Details of the determinant search and subspace iteration methods

Selection of appropriate technique, practical considerations

TEXTBOOK: Sections: 12.1, 12.2.1, 12.2.2, 12.2.3, 12.3.1, 12.3.2, 12.3.3, 12.3.4, 12.3.6 (the material in Chapter 11 is also referred to)

Examples: 12.1, 12.2, 12.3, 12.4

## SOLUTION METHODS FOR

## EIGENPROBLEMS

Standard EVP:
$\underset{n \times n}{ } \underset{\sim}{x}=\lambda \underline{L}$
Generalized EVP:
$\underline{K} \Phi=\lambda \underline{M} \nleftarrow \quad\left(\lambda=\omega^{2}\right)$
Quadratic EVP:
$\left(\underline{K}+\lambda \underline{C}+\lambda^{2} \underline{M}\right) \underline{\phi}=\underline{0}$
Most emphasis on the generalized
EVP e.g. earthquake engineering
"Large EVP" $n>500 \quad p=1, \ldots, \frac{1}{3} n$

$$
m>60
$$

In dynamic analysis, proportional damping
$\underline{K} \underline{\phi}=\omega^{2} \underline{M} \Phi$
If zero freq. are present we can use the following procedure

$$
\underline{K} \Phi+\mu \underline{M} \Phi=\left(\omega^{2}+\mu\right) \underline{M} \Phi
$$

or

$$
(\underline{K}+\mu \underline{M}) \underline{\phi}=\lambda \underline{M} \underline{\phi}
$$

$$
\text { or } \begin{aligned}
\lambda & =\omega^{2}+\mu \\
\omega^{2} & =\lambda-\mu
\end{aligned}
$$



In buckling analysis

$$
\underline{K} \underline{\phi}=\lambda \underline{K}_{G} \underline{\phi}
$$

where

$$
p(\lambda)=\operatorname{det}\left(\underline{K}-\lambda \underline{K}_{G}\right)
$$



Rewrite problem as:

$$
\underline{K}_{G} \Phi=\kappa \underline{K} \Phi \quad \kappa=\frac{1}{\lambda}
$$

and solve for largest $\kappa$ :


Traditional Approach: Transform the generalized EVP or quadratic EVP into a standard form, then solve using one of the many techniques available
e.g.

$$
\begin{aligned}
& \underline{K} \Phi=\lambda \underline{M} \Phi \\
& \underline{M}=\tilde{L}_{\underline{L}} \underline{\underline{T}}^{\top} ; \underline{\tilde{\phi}}=\tilde{\tilde{L}}^{\top} \Phi
\end{aligned}
$$

hence

$$
\underline{\underline{K}} \tilde{\Phi}=\lambda \tilde{\Phi} ; \quad \tilde{\tilde{K}}=\tilde{\tilde{L}}^{-1} \underline{K} \tilde{\underline{L}}^{-T}
$$

or
$\underline{M}=\underline{W} \underline{D}^{2} \underline{W}^{\top} \quad$ etc...

Direct solution is more effective.
Consider the Gen. EVP $\underline{\mathrm{K}} \underline{\phi}=\lambda \underline{\mathrm{M}} \underline{\phi}$ with

$$
\begin{aligned}
& 0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \cdots \leq \lambda_{n} \\
& \qquad \Phi_{1} \Phi_{2} \quad \Phi_{3} \cdots \Phi_{n} \\
& \left.\begin{array}{l}
\text { eigenpairs } \\
\text { are required }
\end{array} \lambda_{i}, \Phi_{i}\right) \quad i=1, \ldots, p \\
& \text { or } i=r, \ldots, s
\end{aligned}
$$

The solution procedures in use operate on the basic equations that have to be satisfied.

## 1) VECTOR ITERATION TECHNIQUES

Equation: $\quad \underline{K} \Phi=\lambda \underline{M} \Phi$
e.g. Inverse It.

$$
\underline{K} \underline{x}_{k+1}=M \underline{x}_{k}
$$

$$
\underline{x}_{k+1}=\frac{\bar{x}_{k+1}}{\left(\bar{x}_{k+1}{ }^{\top} \underline{M} \underline{\bar{x}}_{k+1}\right)^{\frac{3}{2}}} \longrightarrow \Phi_{1}
$$

- Forward Iteration
- Rayleigh Quotient Iteration
can be employed to cal-
culate one eigenvalue and vector, deflate then to calculate additional eigenpair

Convergence to "an eigenpair", which one is not guaranteed (convergence may also be slow)

## 2) POLYNOMIAL ITERATION METHODS

$$
\underline{K} \underline{\underline{K}}=\lambda \underline{M} \Phi \rightarrow(\underline{K}-\lambda \underline{M}) \underline{\underline{0}}
$$

Hence

$$
p(\lambda)=\operatorname{det}(\underline{K}-\lambda \underline{M})=0
$$



Newton Iteration

$$
\begin{aligned}
& \mu_{i+1}=\mu_{i}-\frac{p\left(\mu_{i}\right)}{p^{\prime}\left(\mu_{i}\right)} \\
& p(\lambda)=a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots+a_{n} \lambda^{n} \\
& =b_{0}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)
\end{aligned}
$$

Explicit polynomial iteration:

- Expand the polynomial and iterate for zeros.
- Technique not suitable for larger problems
- much work to obtain $a_{i}$ 's - unstable process

Implicit polynomial iteration:

$$
\begin{aligned}
p\left(\mu_{i}\right) & =\operatorname{det}\left(\underline{K}-\mu_{i} \underline{M}\right) \\
& =\operatorname{det} \underline{\underline{D} \underline{L^{\top}}}=\prod_{\mathbf{i}} \mathbf{d}_{\mathbf{i i}}
\end{aligned}
$$

- accurate, provided we do not encounter large multipliers
- we directly solve for $\lambda_{1}, \ldots$
- use SECANT ITERATION:

$$
\mu_{i+1}=\mu_{\mathbf{i}}-\frac{\mathbf{p}\left(\mu_{\mathrm{i}}\right)}{\left(\frac{\mathbf{p}\left(\mu_{\mathbf{i}}\right)-\mathbf{p}\left(\mu_{\mathrm{i}-1}\right)}{\mu_{\mathbf{i}}-\mu_{\mathbf{i}-1}}\right)}
$$

- deflate polynomial after convergence to $\lambda_{1}$


Convergence guaranteed to $\lambda_{1}$, then
$\lambda_{2}$, etc. but can be slow when we calculate multiple roots.

Care need be taken in $\underline{L} \underline{D} \underline{L}^{\top}$ factorization.
3) STURM SEQUENCE METHODS


Number of negative elements in $D$ is equal to the number of eigenvalues smaller than $\mu_{S}$.

## 3) STURM SEQUENCE METHODS

Calculate $\underline{K}-\mu_{S_{i}} \underline{M}=\underline{L} \underline{D} \underline{L}^{\top}$
Count number of negative elements in $\underline{D}$ and use a strategy to isolate eigenvalue(s).



- Convergence can be very slow

4) TRANSFORMATION METHODS

$$
\underline{K} \phi=\lambda \underline{M} \phi \rightarrow\left\{\begin{array}{l}
\underline{\Phi}{ }^{T} \underline{K} \underline{\Phi}=\underline{\Lambda} \\
\underline{\Phi} \underline{M}_{\underline{M}} \underline{\underline{I}}=\underline{\underline{I}}
\end{array}\right.
$$

Construct $\Phi$ iteratively:
$\Phi=\left[\Phi, \ldots \phi_{n}\right] ; \quad \Lambda=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots \\ & & \lambda_{n}\end{array}\right]$

$$
\begin{aligned}
& \underline{P}_{k}^{\top} \cdots \underline{P}_{2}^{\top} \underline{P}_{1}^{\top} \underline{K} \underline{P}_{1} \underline{P}_{2} \cdots \underline{P}_{k} \rightarrow \underline{\Lambda} \\
& \underline{P}_{k}^{\top} \cdots \underline{P}_{2}^{\top} \underline{P}_{1}^{\top} \stackrel{M}{M} \underline{P}_{1} \underline{P}_{2} \cdots \underline{P}_{k} \rightarrow \underline{I}
\end{aligned}
$$

e.g. generalized Jacobi method

- Here we calculate all eigenpairs simultaneously
- Expensive and ineffective
(impossible) or large problems.

For large eigenproblems it is best to use combinations of the above basic techniques:

- Determinant search to get near a root
- Vector iteration to obtain eigenvector and eigenvalue
- Transformation method for orthogonalization of iteration vectors.
- Sturm sequence method to ensure that required eigenvalue(s) has (or have) been calculated


## THE DETERMINANT SEARCH METHOD



1) Iterate on polynomial to obtain shifts close to $\lambda_{1}$

$$
\begin{aligned}
p\left(\mu_{\mathbf{i}}\right) & =\operatorname{det}\left(\underline{K}-\mu_{\mathbf{i}} \underline{M}\right) \\
& =\operatorname{det} \underline{L} \underline{D} \underline{L}^{\top}={\underset{\mathbf{n}}{\mathbf{i}}} \mathrm{d}_{\mathbf{i} \mathbf{i}} \\
\mu_{\mathbf{i}+1} & =\mu_{\mathbf{i}}-\eta \frac{p\left(\mu_{\mathbf{i}}\right)}{\frac{p\left(\mu_{\mathbf{i}}\right)-p\left(\mu_{\mathbf{i}-1}\right)}{\mu_{\mathbf{i}}-\mu_{\mathbf{i}-1}}}
\end{aligned}
$$

$\eta$ is normally $=\mathbf{1 . 0}$
$\eta=2$, 4. , 8. ,... when convergence is slow

Same procedure can be employed to obtain shift near $\lambda_{i}$, provided $p(\lambda) \quad$ is deflated of $\lambda_{1}, \ldots, \lambda_{i-1}$

## 2) Use Sturm sequence property to

 check whether $\mu_{i+1}$ is larger than an unknown eigenvalue.3) Once $\quad \mu_{i+1}$ is larger than an unknown eigenvalue, use inverse iteration to calculate the eigenvector and eigenvalue


$$
\begin{aligned}
\left(\underline{K}-\mu_{i+1} \underline{M}\right) \underline{\bar{x}}_{k+1} & =\underline{M} \underline{x}_{k} \quad k=1,2, \ldots \\
\underline{x}_{k+1} & =\frac{\bar{x}_{k+1}}{\left(\bar{x}_{k+1}^{\top} M \bar{x}_{k+1}\right)^{\frac{1}{2}}} \\
\rho\left(\underline{\bar{x}}_{k+1}\right) & =\frac{\bar{x}_{k+1}^{\top}-\frac{M}{x}}{\bar{x}_{k+1}-M} \underline{\bar{x}}_{k+1}
\end{aligned}
$$

4) Iteration vector must be deflated of the previously calculated eigenvectors using, e.g. GramSchmidt orthogonalization.

If convergence is slow use Rayleigh quotient iteration

Advantage:
Calculates only eigenpairs actually required; no prior transformation of eigenproblem

Disadvantage:
Many triangular factorizations

- Effective only for small banded systems

We need an algorithm with less factorizations and more vector iterations when the bandwidth of the system is large.

## SUBSPACE ITERATION METHOD

Iterate with $q$ vectors when the lowest $p$ eigenvalues and eigenvectors are required.

$$
\begin{aligned}
& \underset{\text { iteration }}{\text { inverse }}\left\{\underline{K} \quad \bar{X}_{k+1}=M \quad X_{k} \quad k=1,2, \ldots\right. \\
& \underline{K}_{k+1}=\underline{\bar{X}}_{k+1}^{\top} \quad \underline{k} \quad \underline{\bar{X}}_{k+1} \\
& \underline{M}_{k+1}=\underline{\bar{X}}_{k+1}^{\top} \quad \underline{M} \quad \bar{X}_{k+1} \\
& K_{k+1} \underline{Q}_{k+1}=M_{k+1} \quad Q_{k+1} \quad \Lambda_{k+1} \\
& \underline{X}_{k+1}=\underline{X}_{k+1} \quad \underline{Q}_{k+1}
\end{aligned}
$$

"Under conditions" we have

$$
\begin{aligned}
& X_{k+1} \rightarrow \Phi ; \underline{\Lambda}_{k+1} \rightarrow \underline{\Lambda} \\
& \Phi=\left[\underline{\phi}_{7}, \ldots, \underline{\phi}_{q}\right] ; \underline{\Lambda}=\operatorname{diag}\left(\lambda_{i}\right)
\end{aligned}
$$

## CONDITION:

starting subspace spanned by $\underline{X}_{1}$ must not be orthogonal to least dominant subspace required.

no. of -ve elements in $\underline{D}$ must be equal to $p$.
Convergence rate:

$$
\Phi_{\mathbf{i}} \Rightarrow \underline{\lambda_{i} / \lambda_{q+1}} \quad \lambda_{i} \Rightarrow \underline{\left(\lambda_{i} / \lambda_{q+1}\right)^{2}} \quad \text { when }\left|\frac{\lambda_{i}^{(k)}-\lambda_{i}^{(k-1)}}{\lambda_{i}^{(k)}}\right| \leq \text { tol }
$$

## Starting Vectors

Two choices

1) $\underline{x}_{1}=\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ \vdots \\ 1\end{array}\right] ; \quad \underline{x}_{j}=\begin{gathered}e_{k} \\ j=2, \ldots, q-1\end{gathered}$
$\underline{x}_{\mathrm{q}}=$ random vector
2) Lanczos method Here we need to use q much larger than $\mathbf{p}$.

## Checks on eigenpairs

1. Sturm sequence checks
2. $\varepsilon_{i}=\frac{\left\|\underline{K} \Phi_{i}^{(\ell+1)}-\lambda_{i}^{(\ell+1)} \underline{M}_{i}^{(\ell+1)}\right\|_{2}}{\left\|\underline{K} \Phi_{i}^{(\ell+1)}\right\|_{2}}$
important in all solutions.
Reference: An Accelerated Subspace Iteration Method, J. Computer Methods in Applied Mechanics and Engineering, Vol. 23, pp. 313-331, 1980 .

MIT OpenCourseWare
http://ocw.mit.edu

## Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

