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Analysis of continuons systems; differential and variational formulations

LECTURE 2 Basic concepts in the analysis of continuous
systems

Differential and variational formulations

Essential and natural boundary conditions

Definition of C™" variational problem

Principle of virtual displacements

Relation between stationarity of total potential, the
principle of virtual displacements, and the differ-

ential formulation

Weighted residual methods, Galerkin, least
squares methods

Ritz analysis method

Properties of the weighted residual and Riiz
methods

Example analysis of a nonuniform bar, solution

accuracy. introduction to the finite element
method

TEXTBOOK: Sections: 3.3.1, 3.3.2, 3.3.3

Examples: 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21.
3.22, 3.23, 3.24, 3.25
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BASIC CONCEPTS

OF FINITE ® Some additional
ELEMENT ANALYSIS — basic concepts are

CONTINUOUS SYSTEMS used in analysis of

continuous systems

® We discussed some
basic concepts of
analysis of discrete
systems
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formulation formulation
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Weighted residual Ritz Method
methods

Galerkin —-—<«——>

least squares
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finite element method
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Example - Differential formulation

y wulzt)
y [ Ro
At A b
g e L S TS SR © " M &
1 Young’s modulus, E
/ R(t)  mass density,
'J cross-sectional area, A
Ra
K
The problem governing differential
equation is
ST
ax2 ¢ at? e

Derivation of differential equation

The element force equilibrium require-
ment of a typical differential element
is using d’Alembert’s principle

o ‘_—;+%:- dx
bl

Area A, mass density p .

2
o u
oAIX + A —gi xdx - oAIX =pA ——z—at

The constitutive relation is

_pdu
O_Eax

Combining the two equations above
we obtain

% _ 1 3f
3x2 CZ 2
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The boundary conditions are
u(0,t) = 0 > essential (displ.) B.C.
EA g—:: (L,t) = Ry = natural (force) B.C.
with initial conditions
u(x,0) =0

au -
5{ (X,O) 0

In general, we have

highest order of (spatial) deriva-
tives in problem-governing dif-
ferential equation is 2m.

highest order of (spatial) deriva-
tives in essential b.c. is (m-1)

highest order of spatial deriva-
tives in natural b.c. is (2m-1)

Definition:

We call this problem a ¢™"1
variational problem.
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Example - Variational formulation

We have in general
I=u—w

For the rod

and

u0=0

andwehave 8IT = 0

The stationary condition 6II = 0 gives

L L
ou ou
_/(;'(EAE)YHGK) dx—./.o suf® dx
=0

—6uLR

This is the principle of virtual
displacements governing the
problem. In general, we write
this principle as

fa_gT_‘[_dV = [suT£Bdv
v
+

Vv T
fal_Js 5ds
S

or
feTTdV = ngdev
\')
+Vfgs £S ds

(see also Lecture 3)
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However, we can now derive the
differential equation of equilibrium
and theb.c.at x=1L .

o adu Sau
Writing 5—)—(— for %
calling that EA is constant and

using integration by parts yields

, re-

L 32u B ou
-j(;(EA et oudcr AN L RIa

ox X=L

Ju
- EAé—;

x=0

Since 6u0 is zerobut Su s
arbitrary at all other points, we
must have

2

EASY s+ f
X

B=0

and

u _
EATY)?'x=L_ R

2
Also, fB= -Ap a_g and

hence we have

2 2
ou_ 1 3°u . _‘/E
2 72 @>c-" )
99X ¢ ot
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The important point is that invoking
$II = 0 and using the essential
b.c. only we generate

e the principle of virtual
displacements

e the problem-governing differ-
ential equation

o the natural b.c. (these are in
essence ‘‘contained in” 1] ,
i.e., inw).

In the derivation of the problem-
governing differential equation we
used integration by parts

o the highest spatial derivative
in T isoforder m.

sWe use integration by parts
m-times.

Total Potential I

Use S8II=0 and essentialb.c.

{

Principle of Virtual solve
Displacements problem
Integration by parts
Differential Equation
of Equilibrium — » Solve
and natural b.c. problem
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Weighted Residual Methods

Consider the steady-state problem

L2m[¢] =r (3.6)

with the B.C.

B;[¢] = q; i=1,2,...

at boundary (3.7)

The basic step in the weighted
residual (and the Ritz analysis)
is to assume a solution of the
form
n
6= af; (3.10)

i=1

where the fi are linearly indepen-
dent trial functions and the a;

are multipliers that are deter-
mined in the analysis.

Using the weighted residual methods,
we choose the functions f; in (3.10)
so0 as to satisfy all boundary conditions
in (3.7) and we then calculate the
residual,

n

The various weighted residual methods
differ in the criterion that they employ
to calculate the a; such that R is small.
In all techniques we determine the a,

s0 as to make a weighted average of

R vanish.
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Galerkin method

In this technique the parameters a; are
determined from the n equations

JfiRdD=0 i=1,2,...,n  (3.12)
D

Least squares method

In this technique the integral of the
square of the residual is minimized with

respect to the parameters a; .

) 2 N .
a*ai— fRdD—O 1 ],2,...,”
D

[The methods can be extended to
operate also on the natural boundary
conditions, if these are not satisfied
by the trial functions. ]

RITZ ANALYSIS METHOD

Let 1T be the functional of the

c™-1 variational problem that is

equivalent to the differential
formulation given in (3.6) and (3.7).
In the Ritz method we substitute the
trial functions ¢ given in (3.10)
into II and generate n simul-
taneous equations for the para-
meters a; using the stationary
conditionon I ,

oIl .
3a_i_z() i=1,2,...,n  (3.14)
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Properties

® The trial functions used in the
Ritz analysis need only satisfy the
essential b.c.

® Since the application of 81I=10
generates the principle of virtual
displacements, we in effect use
this principle in the Ritz analysis.

®Byinvoking &I =0 we minimize
the violation of the internal equilibrium
requirements and the violation of
the natural b.c.

® A symmetric coefficient matrix
is generated, of form

KU=R

Example
- Y2 2

Area = 1 cmz Area = (1 +?l'0') cm
A
A
7/
/ R=100 N
/‘——»x’u — G—— - —— 5  —— — ——— Ce—— . —
AA B C -
/]
/ L\

y

I~ om N - 1

Fig. 3.19. Bar subjected to
concentrated end force.
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Here we have

180
- 1 du,2
0

and the essential boundary condition

is ul,_o=0

Let us assume the displacements

Case 1

u = a;x + a, x2

Case 2

u = XTOEO& 0<x<100

u = (-l _Xé.(l)OO) uB (X ]00) U
100<x <180

We note that invoking S8II=0
we obtain

180
i =/ (EA £3) 8(2%) dx-100 8uj, ;g0
0 -0

or the principle of virtual
displacements

180
adu ’au _
/(; (3x —) (EA ) dx =100 §u =180
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Exact Solution

Using integration by parts we

obtain
0 duy _
X (EA 5)?) =0
ou _
EA Y = 100
x=180

The solution is

u=10x 5 0<x<100

, .10000, 4000 4000
E E Ty o X100
50

100 < x <180

The stresses in the bar are
o=100; 0<x<100

o= — 0, 5100<x<180
+

(1 —7[0—)
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Performing now the Ritz analysis:

Case 1

100 180
_E 2 E x-100,2
H_7f (a;+2a,x) dx + 7 / (1+ i)

0 100

2
(a]+2a2x) dx - 100 u’x=180

Invoking that &§1=0  we obtain

[0.4467 116 :l l:a]] 18
E =
116 34076 a, [3240]

Hence, we have the approximate

solution
_ i2G.6 X - 0.341 2
E F X
o =128.6 - 0.682 x
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Case 2

Here we have

100 180
- 12 E x-100,2
I zf Too Ug)” dxtgm | (145
0 100
1 1 2

Invoking again SIT= 0 we obtain
2 {15.4 -13} [UBJ _ [o ]
“0 Lz sl Lugd Lo

Hence, we now have
_ 10000 | . = 11846.2

Ug = g > U T

o=100 ;3 0<x<100

Q
|
N
w
o
co

x>100
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EXACT
15000 |
E
10000 | Solution 1 ==
- Solution 2
5000
E
I — X
180
CALCULATED DISPLACEMENTS
|
AN
]00-=—__ém_f_—_
\\ /‘/EXACT
N
N SOLUTION 1
50. | /
| SOLUTION 2
LoD o/
T T —
100 180
CALCULATED STRESSES




Analysis of confinuons systems; differential and variational formulations

We note that in this last analysis

o we used trial functions that do
not satisfy the natural b.c.

e the trial functions themselves
are continuous, but the deriva-
tives are discontinuous at point
B.
fora variational problem
we only need continuity in the
(m-1)st derivatives of the func-
tions; in this problem m=1.

cm'1

edomains A-B and B-C are
finite elements and
WE PERFORMED A
FINITE ELEMENT
ANALYSIS .
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