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Analysis 01 continnous systems; differential and variational lonnDlations

LECTURE 2 Basic concepts in the analysis of continuous
systems

Differential and variational formulations

Essential and natural boundary conditions

Definition of em-I variational problem

Principle of virtual displacements

Relation between stationarity of total potential, the
principle of virtual displacements, and the differ­
ential formulation

Weighted residual methods, Galerkin, least
squares methods

Ritz analysis method

Properties of the weighted residual and Ritz
methods

Example analysis of a nonuniform bar, solution
accuracy, introduction to the finite element
method

TEXTBOOK: Sections: 3.3.1, 3.3.2, 3.3.3

Examples: 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21,
3.22, 3.23, 3.24, 3.25

2·2



Analysis of continuous systems; differential and variational formulations

BASIC CONCEPTS
OF FINITE
ELEMENT ANALYSIS ­
CONTINUOUS SYSTEMS

• We discussed some
basic concepts of
analysis of discrete
systems

• Some additional
basic concepts are
used in analysis of
continuous systems

CONTINUOUS SYSTEMS

differential
formulation

t
Weighted residual
methods

Galerkin _.._-----41~_
least squares

variational
formulation

Ritz Method

....
finite element method
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Analysis of continuous systeDlS; differential and ,arialionalIOl'llulali.

Example - Differential formulation

aA I + A ~aI dx - aA Ixx oX X

/

Young's modulus, E
~Lt:) mass density,

cross-sectional area, A

R..~-------

The problem governing differential
equation is

Derivation of differential equation

The element force equilibrium require­
ment of a typical differential element
is using d'Alembert's principle

r
~ .-;+~~ dx

I~
Area A, mass density p

2
= p A a u
~

The constitutive relation is

au
a = E ­ax

Combining the two equations above
we obtain
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baIysis 01 COitiDlOU systems; differatial aDd variationaliOl'lDDlatiODS

The boundary conditions are

u(O,t} =°
EA ~~ (L,t) = RO

with initial conditions

u(x,O} = °
~ (x O) =°at '

9 essential (displ.) B.C.

9 natural (force) B.C.

In general, we have

highest order of (spatial) deriva­
tives in problem-governing dif­
ferential equation is 2m.

highest order of (spatial) deriva­
tives in essential b.c. is (m-1)

highest order of spatial deriva­
tives in natural b.c. is (2m-1)

Definition:

We call this problem a Cm-1

variational problem.
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Analysis 01 continuous systems; differential and variatioD,a1 fOl'llolatiODS

Example - Variational formulation

We have in general

II=U-W

For the rod

fL
II = J }EA

o

and

i
L

au 2 B(--) dx - u f dx - u Rax L
o

u = 0o
and we have 0 II = 0

The stationary condition 6II = 0 gives

rL au au rL.B
JO(EA ax)(6 ax) dx -)0 6u t- dx

- 6u
L

R = 0

This is the principle of virtual
displacements governing the
problem. In general, we write
this principle as

or

(see also Lecture 3)
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lIiIysis of ..IiDIGUS systems; differential and variatiooallormulatioDS

However, we can now derive the
differential equation of equilibrium
and the b.c. at x = l .

Writing a8u for 8au , re-
ax ax

calling that EA is constant and
using integration by parts yields

dx + [EA ~ I
ax x=L

- EA ~\dX
x=o

Since QUO is zero but QU is
arbitrary at all other points, we
must have

and

au IEAax- x=L=R

B a2uAlso f = -A p - and
, at2

hence we have
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Analysis of cODtiDaoas syst_ diIIereatial and variatioul fOlllalatiODS

The important point is that invoking
o IT = 0 and using the essential

b.c. only we generate

• the principle of virtual
displacements

• the problem-governing differ­
ential aquatio!)

• the natural b.c. (these are in
essence "contained in" IT ,
i.e., inW).

In the derivation of the problem­
governing differential equation we
used integration by parts

• the highest spatial derivative
in IT is of order m .

• We use integration by parts
m-times.

Total Potential IT

I
Use oIT = 0 and essential "b.c.

~
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Principle of Virtual
Displacements

I
Integration by parts

~
Differential Equation

of Equilibrium
and natural b.c.

_ solve
problem

_solve
problem



balysis of aDa. syst-: diBerential and variatiouallnaiatiOlS

Weighted Residual Methods

Consider the steady-state problem

(3.6)

with the B.C.

B.[</>] = q., i =1,2, •••
1 1

at boundary (3.7)

The basic step in the weighted
residual (and the Ritz analysis)
is to assume a solution of the
form

(3.10)

where the fi are linearly indepen­
dent trial functions and the ai
are multipliers that are deter­
mined in the analysis.

Using the weighted residual methods,
we choose the functions fi in (3.10)
so as to satisfy all boundary conditions
in (3.7) and we then calculate the
residual,

n
R = r - L2mCL a· f.] (3.11 )

1 =1 1 1

The various weighted residual methods
differ in the criterion that they employ
to calculate the ai such that R is small.
In all techniques we determine the ai
so as to make a weighted average of
R vanish.
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Analysis 01 C.tinnoDS systems; differential and variational 10000nlations

Galerkin method

In this technique the parameters ai are
determined from the n equations

f f. R dD=O ;=1,2, ••• ,n
D 1

Least squares method

(3.12)

In this technique the integral of the
square of the residual is minimized with
respect to the parameters ai '

a
aa.

1

;=1,2, ••• ,n

[The methods can be extended to
operate also on the natural boundary
conditions, if these are not satisfied
by the trial functions.]

RITZ ANALYSIS METHOD

Let n be the functional of the

em-1 variational problem that is
equivalent to the differential
formulation given in (3.6) and (3.7).
In the Ritz method we substitute the
trial functions <p given in (3.10)
into n and generate n simul­
taneous equations for the para­
meters ai using the stationary
condition on n ,

2·10
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Analysis of continuous systems; differential and variational formulations

Properties

• The trial functions used in the
Ritz analysis need only satisfy the
essential b.c.

• Since the application of oIl = 0
generates the principle of virtual
displacements, we in effect use
this principle in the Ritz analysis.

• By invoking 0 II = 0 we minimize
the violation of the internal equilibrium
requirements and the violation of
the natural b.c.

• A symmetric coefficient matrix
is generated, of form

K U = R

Example

R=100 N

2Area = 1 em

(
........_- x,u --- - - - - -- - ~---r;;;-==-e-.F- --.;;B;",.,. C

I-...--~~---·-I-..--------·-I100 em 80 em

Fig. 3.19. Bar subjected to
concentrated end force.
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Analysis of COitiDlOIS systems; differeatial ad ,ariali" fOllDaialiODS

Here we have

1
180

IT = 1 EA(~)2 dx
2 ax

o
- 100 uIx = 180

and the essential boundary condition
is u Ix=O = 0

Let us assume the displacements

Case 1

u = a1x + a2 i
Case 2

~u = I1JO 0< x < 100

100 < x < 180

We note that invoking oIT = 0
we obtain

1
180

oIT = (EA ~~) o(~~) dx - 100 OU Ix=180

o = 0

or the principle of virtual
displacements

£
180

(~~u)( EA ~~) dx = 100 OU Ix=180
o

JET T dV = IT. F.
- - 1 1

V
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Analysis of continuous systems; differential and variational formulations

Exact Solution

Using integration by parts we
obtain

~ (EA ~) = 0ax ax

EA ~ = 100ax
x=180

The solution is

u = 1~O x ; 0 < x < 100

100 < x < 180

The stresses in the bar are

a = 100; 0 < x < 100

a = 100 ; 100 < x < 180
(l+x-l00)2

40

2·13



Analysis of continuous systems; differential and variational formulations

Performing now the Ritz analysis:

Case 1

f
180

dx+ I (1+ x-l00)2
2 40

100

Invoking that orr = 0 we obtain

E [0.4467

116

and

116

34076

128.6
a1 = ---=E=--- a - 0.341

2 - - E

Hence, we have the approximate
solution

u =
12C.6 0.341

E x - E
2x

2·14

a = 128.6 - 0.682 x



Analysis of continuous systems; differential and variational formulations

Case 2

Here we have

100

E J 1 2n=2 (100 uB)
a

f
180

dx+ I (1+x-l00)2
2 40

100

Invoking again on =0 we obtain

E [15.4 -13]
[~:] = [~oo]240

-13 13

Hence, we now have

10000 11846.2
U = E Uc EB

and

o = 100 0< x < 100

1846.2 = 23.08 x> 100o =
80
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u

EXACT

~-- --- -::.:--~~~.-.-.

" Sol ution 2

---..I~ ..,-__--r-__--.,r--- ~X

15000
E

10000
E

5000
-E-

100 180

CALCULATED DISPLACEMENTS

(J

50

100-I=:::==-==_==_:=os:=_=_=,==_=_==
"" EXACT

"I~
~ SOLUTION 1

I -< ,J SOLUTION 2

L._._. ~._._
-+ ---,~--------r-------~X

100 180

CALCULATED STRESSES
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balysis of coatiDloas systms; diBerenlial ud variational fonnllatioas

We note that in this last analysis

e we used trial functions that do
not satisfy the natural b.c.

e the trial functions themselves
are continuous, but the deriva­
tives are discontinuous at point
B. 1
for a em- variational problem
we only need continuity in the
(m-1)st derivatives of the func­
tions; in this problem m =1 .

edomains A - Band B- e are
finite elements and
WE PERFORMED A
FINITE ELEMENT
ANALYSIS.
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